RESUMO
Algorithms designed to identify canonical yeast prions predict that around 250 human proteins, including several RNA-binding proteins associated with neurodegenerative disease, harbour a distinctive prion-like domain (PrLD) enriched in uncharged polar amino acids and glycine. PrLDs in RNA-binding proteins are essential for the assembly of ribonucleoprotein granules. However, the interplay between human PrLD function and disease is not understood. Here we define pathogenic mutations in PrLDs of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1 in families with inherited degeneration affecting muscle, brain, motor neuron and bone, and in one case of familial amyotrophic lateral sclerosis. Wild-type hnRNPA2 (the most abundant isoform of hnRNPA2B1) and hnRNPA1 show an intrinsic tendency to assemble into self-seeding fibrils, which is exacerbated by the disease mutations. Indeed, the pathogenic mutations strengthen a 'steric zipper' motif in the PrLD, which accelerates the formation of self-seeding fibrils that cross-seed polymerization of wild-type hnRNP. Notably, the disease mutations promote excess incorporation of hnRNPA2 and hnRNPA1 into stress granules and drive the formation of cytoplasmic inclusions in animal models that recapitulate the human pathology. Thus, dysregulated polymerization caused by a potent mutant steric zipper motif in a PrLD can initiate degenerative disease. Related proteins with PrLDs should therefore be considered candidates for initiating and perhaps propagating proteinopathies of muscle, brain, motor neuron and bone.
Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Proteínas Mutantes/genética , Mutação/genética , Miosite de Corpos de Inclusão/genética , Osteíte Deformante/genética , Príons/química , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/metabolismo , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Camundongos , Dados de Sequência Molecular , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Miosite de Corpos de Inclusão/metabolismo , Miosite de Corpos de Inclusão/patologia , Osteíte Deformante/metabolismo , Osteíte Deformante/patologia , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Príons/genética , Príons/metabolismo , Estrutura Terciária de Proteína/genética , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Current antiretroviral therapy (ART) guidelines recommend treating all children with HIV-1 infection. This has changed from the broader use of ART to treat children to improve morbidity and minimise mortality. However, prior to current recommendations, not everyone with HIV-1 received timely treatment. What happens to the paediatric immune system when HIV-1 replication is not appropriately supressed remains unclear. 11 samples from adolescents with HIV-1 on ART and uninfected controls in the UK, aged 12-25 years, were examined; overall, adolescents with CD4+ counts > 500/µl and a viral load < 50 copies/ml were compared with adolescents with CD4+ counts < 500/µl and a viral load > 50 copies/ml at time of sampling. Measurements of thymic output were combined with high throughput next generation sequencing and bioinformatics to systematically organize CD4+ and CD8+ T cell receptor (TCR) repertoires. TCR repertoire diversity, clonal expansions, TCR sequence sharing, and formation of TCR clusters in HIV-1 infected adolescents with successful HIV-1 suppression were compared to adolescents with ineffective HIV-1 suppression. Thymic output and CD4+ T cell numbers were decreased in HIV-1 infected adolescents with poor HIV-1 suppression. A strong homeostatic TCR response, driven by the decreased CD4+ T cell compartment and reduced thymic output was observed in the virally uncontrolled HIV-1-infected adolescents. Formation of abundant robust TCR clusters and structurally related TCRs were found in the adolescents with effective HIV-1 suppression. Numerous CD4+ T cell numbers in the virally controlled adolescents emphasize the importance of high thymic output and formation of robust TCR clusters in the maintenance of HIV-1 suppression. While the profound capacity for immune recovery in children may allow better opportunity to deal with immunological stress, when ART is taken appropriately, this study demonstrates new insights into the unique paediatric immune system and the immunological changes when HIV-1 replication is ongoing.
Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Adolescente , Adulto , Antirretrovirais/uso terapêutico , Criança , Soropositividade para HIV/tratamento farmacológico , Humanos , Imunidade , Receptores de Antígenos de Linfócitos T , Adulto JovemRESUMO
Our mathematical model of integration site data in clinical gene therapy supported the existence of long-term lymphoid progenitors capable of surviving independently from hematopoietic stem cells. To date, no experimental setting has been available to validate this prediction. We here report evidence of a population of lymphoid progenitors capable of independently maintaining T and NK cell production for 15 years in humans. The gene therapy patients of this study lack vector-positive myeloid/B cells indicating absence of engineered stem cells but retain gene marking in both T and NK. Decades after treatment, we can still detect and analyse transduced naïve T cells whose production is likely maintained by a population of long-term lymphoid progenitors. By tracking insertional clonal markers overtime, we suggest that these progenitors can support both T and NK cell production. Identification of these long-term lymphoid progenitors could be utilised for the development of next generation gene- and cancer-immunotherapies.
Assuntos
Células Matadoras Naturais/fisiologia , Linfócitos/fisiologia , Células Progenitoras Linfoides/fisiologia , Linfócitos T/fisiologia , Linfócitos B , Terapia Genética/métodos , Células-Tronco Hematopoéticas , Humanos , Interferon gama/metabolismo , Mutagênese , Células Mieloides/fisiologia , Proto-Oncogenes/genética , Proto-Oncogenes/fisiologiaRESUMO
Deficiency of adenosine deaminase (ADA, EC3.5.4.4), a housekeeping enzyme intrinsic to the purine salvage pathway, leads to severe combined immunodeficiency (SCID) both in humans and mice. Lack of ADA results in the intracellular accumulation of toxic metabolites which have effects on T cell development and function. While untreated ADA-SCID is a fatal disorder, there are different therapeutic options available to restore ADA activity and reconstitute a functioning immune system, including enzyme replacement therapy (ERT). Administration of ERT in the form of pegylated bovine ADA (PEG-ADA) has proved a life-saving though non-curative treatment for ADA-SCID patients. However, in many patients treated with PEG-ADA, there is suboptimal immune recovery with low T and B cell numbers. Here, we show reduced thymus cellularity in ADA-SCID mice despite weekly PEG-ADA treatment. This was associated with lack of effective adenosine (Ado) detoxification in the thymus. We also show that thymocyte development in ADA-deficient thymi is arrested at the DN3-to-DN4 stage transition with thymocytes undergoing dATP-induced apoptosis rather than defective TCRß rearrangement or ß-selection. Our studies demonstrate at a detailed level that exogenous once-a-week enzyme replacement does not fully correct intra-thymic metabolic or immunological abnormalities associated with ADA deficiency.
Assuntos
Adenosina Desaminase/uso terapêutico , Agamaglobulinemia/tratamento farmacológico , Imunodeficiência Combinada Severa/tratamento farmacológico , Timócitos/patologia , Adenosina Desaminase/deficiência , Agamaglobulinemia/patologia , Animais , Bovinos , Terapia de Reposição de Enzimas , Camundongos SCID , Imunodeficiência Combinada Severa/patologia , Timócitos/efeitos dos fármacos , Timócitos/metabolismoRESUMO
It is intriguing that, unlike adults with HIV-1, children with HIV-1 reach a greater CD4+ T cell recovery following planned treatment cessation. The reasons for the better outcomes in children remain unknown but may be related to increased thymic output and diversity of T cell receptor repertoires. HIV-1 infected children from the PENTA 11 trial tolerated planned treatment interruption without adverse long-term clinical, virological, or immunological consequences, once antiretroviral therapy was re-introduced. This contrasts to treatment interruption trials of HIV-1 infected adults, who had rapid changes in T cells and slow recovery when antiretroviral therapy was restarted. How children can develop such effective immune responses to planned treatment interruption may be critical for future studies. PENTA 11 was a randomized, phase II trial of planned treatment interruptions in HIV-1-infected children (ISRCTN 36694210). In this sub-study, eight patients in long-term follow-up were chosen with CD4+ count>500/ml, viral load <50c/ml at baseline: four patients on treatment interruption and four on continuous treatment. Together with measurements of thymic output, we used high-throughput next generation sequencing and bioinformatics to systematically organize memory CD8+ and naïve CD4+ T cell receptors according to diversity, clonal expansions, sequence sharing, antigen specificity, and T cell receptor similarities following treatment interruption compared to continuous treatment. We observed an increase in thymic output following treatment interruption compared to continuous treatment. This was accompanied by an increase in T cell receptor clonal expansions, increased T cell receptor sharing, and higher sequence similarities between patients, suggesting a more focused T cell receptor repertoire. The low numbers of patients included is a limitation and the data should be interpreted with caution. Nonetheless, the high levels of thymic output and the high diversity of the T cell receptor repertoire in children may be sufficient to reconstitute the T cell immune repertoire and reverse the impact of interruption of antiretroviral therapy. Importantly, the effective T cell receptor repertoires following treatment interruption may inform novel therapeutic strategies in children infected with HIV-1.
Assuntos
Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Adolescente , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Criança , Pré-Escolar , Seguimentos , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Carga Viral/efeitos dos fármacos , Carga Viral/imunologiaRESUMO
The transcription factor FOXN1 is a master regulator of thymic epithelial cell (TEC) development and function. Here, we demonstrate that FOXN1 expression is differentially regulated during organogenesis and participates in multimolecular nuclear condensates essential for the factor's transcriptional activity. FOXN1's C-terminal sequence regulates the diffusion velocity within these aggregates and modulates the binding to proximal gene regulatory regions. These dynamics are altered in a patient with a mutant FOXN1 that is modified in its C-terminal sequence. This mutant is transcriptionally inactive and acts as a dominant negative factor displacing wild-type FOXN1 from condensates and causing athymia and severe lymphopenia in heterozygotes. Expression of the mutated mouse ortholog selectively impairs mouse TEC differentiation, revealing a gene dose dependency for individual TEC subtypes. We have therefore identified the cause for a primary immunodeficiency disease and determined the mechanism by which this FOXN1 gain-of-function mutant mediates its dominant negative effect.
RESUMO
Spectratyping assays are well recognized as the clinical gold standard for assessing the T cell receptor (TCR) repertoire in haematopoietic stem cell transplant (HSCT) recipients. These assays use length distributions of the hyper variable complementarity-determining region 3 (CDR3) to characterize a patient's T cell immune reconstitution post-transplant. However, whilst useful, TCR spectratyping is notably limited by its resolution, with the technique unable to provide data on the individual clonotypes present in a sample. High-resolution clonotype data are necessary to provide quantitative clinical TCR assessments and to better understand clonotype dynamics during clinically relevant events such as viral infections or GvHD. In this study we developed and applied a CDR3 Next Generation Sequencing (NGS) methodology to assess the TCR repertoire in cord blood transplant (CBT) recipients. Using this, we obtained comprehensive TCR data from 16 CBT patients and 5 control cord samples at Great Ormond Street Hospital (GOSH). These were analyzed to provide a quantitative measurement of the TCR repertoire and its constituents in patients post-CBT. We were able to both recreate and quantify inferences typically drawn from spectratyping data. Additionally, we demonstrate that an NGS approach to TCR assessment can provide novel insights into the recovery of the immune system in these patients. We show that NGS can be used to accurately quantify TCR repertoire diversity and to provide valuable inference on clonotypes detected in a sample. We serially assessed the progress of T cell immune reconstitution demonstrating that there is dramatic variation in TCR diversity immediately following transplantation and that the dynamics of T cell immune reconstitution is perturbed by the presence of GvHD. These findings provide a proof of concept for the adoption of NGS TCR sequencing in clinical practice.
Assuntos
Regiões Determinantes de Complementaridade/genética , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Transplante de Células-Tronco Hematopoéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reconstituição Imune/imunologia , Receptores de Antígenos de Linfócitos T/genética , Sequência de Bases , Criança , Pré-Escolar , Doença Enxerto-Hospedeiro/genética , Humanos , Reconstituição Imune/genética , Lactente , Recém-Nascido , Análise de Sequência de DNA/métodos , Linfócitos T/imunologiaRESUMO
Mutations in TANK binding kinase 1 (TBK1) have been linked to amyotrophic lateral sclerosis. Some TBK1 variants are nonsense and are predicted to cause disease through haploinsufficiency; however, many other mutations are missense with unknown functional effects. We exome sequenced 699 familial amyotrophic lateral sclerosis patients and identified 16 TBK1 novel or extremely rare protein-changing variants. We characterized a subset of these: p.G217R, p.R357X, and p.C471Y. Here, we show that the p.R357X and p.G217R both abolish the ability of TBK1 to phosphorylate 2 of its kinase targets, IRF3 and optineurin, and to undergo phosphorylation. They both inhibit binding to optineurin and the p.G217R, within the TBK1 kinase domain, reduces homodimerization, essential for TBK1 activation and function. Finally, we show that the proportion of TBK1 that is active (phosphorylated) is reduced in 5 lymphoblastoid cell lines derived from patients harboring heterozygous missense or in-frame deletion TBK1 mutations. We conclude that missense mutations in functional domains of TBK1 impair the binding and phosphorylation of its normal targets, implicating a common loss of function mechanism, analogous to truncation mutations.
Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ciclo Celular , Códon sem Sentido , Éxons , Feminino , Estudos de Associação Genética , Humanos , Fator Regulador 3 de Interferon/genética , Masculino , Proteínas de Membrana Transportadoras , Mutação de Sentido Incorreto , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Fator de Transcrição TFIIIA/genéticaRESUMO
To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Estudo de Associação Genômica Ampla/métodos , Cinesinas/genética , Mutação com Perda de Função/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/epidemiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. We screened 751 familial ALS patient whole-exome sequences and identified six mutations including p.D40G in the ANXA11 gene in 13 individuals. The p.D40G mutation was absent from 70,000 control whole-exome sequences. This mutation segregated with disease in two kindreds and was present in another two unrelated cases (P = 0.0102), and all mutation carriers shared a common founder haplotype. Annexin A11-positive protein aggregates were abundant in spinal cord motor neurons and hippocampal neuronal axons in an ALS patient carrying the p.D40G mutation. Transfected human embryonic kidney cells expressing ANXA11 with the p.D40G mutation and other N-terminal mutations showed altered binding to calcyclin, and the p.R235Q mutant protein formed insoluble aggregates. We conclude that mutations in ANXA11 are associated with ALS and implicate defective intracellular protein trafficking in disease pathogenesis.
Assuntos
Esclerose Lateral Amiotrófica/genética , Anexinas/genética , Anexinas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Mutação/genética , Ligação Proteica , Transporte Proteico , Proteína A6 Ligante de Cálcio S100/metabolismoRESUMO
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping, fatal neurodegenerative disorders in which the molecular and pathogenic basis remains poorly understood. Ubiquitinated protein aggregates, of which TDP-43 is a major component, are a characteristic pathological feature of most ALS and FTD patients. Here we use genome-wide linkage analysis in a large ALS/FTD kindred to identify a novel disease locus on chromosome 16p13.3. Whole-exome sequencing identified a CCNF missense mutation at this locus. Interrogation of international cohorts identified additional novel CCNF variants in familial and sporadic ALS and FTD. Enrichment of rare protein-altering CCNF variants was evident in a large sporadic ALS replication cohort. CCNF encodes cyclin F, a component of an E3 ubiquitin-protein ligase complex (SCF(Cyclin F)). Expression of mutant CCNF in neuronal cells caused abnormal ubiquitination and accumulation of ubiquitinated proteins, including TDP-43 and a SCF(Cyclin F) substrate. This implicates common mechanisms, linked to protein homeostasis, underlying neuronal degeneration.
Assuntos
Esclerose Lateral Amiotrófica/genética , Ciclinas/genética , Demência Frontotemporal/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto , Adulto , Idoso , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico , Cromossomos Humanos Par 16/genética , Saúde da Família , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Análise de Sequência de DNA/métodos , Homologia de Sequência de AminoácidosRESUMO
Mutations in CHCHD10 have recently been reported as a cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. To address the genetic contribution of CHCHD10 to ALS, we have screened a cohort of 425 UK ALS ± frontotemporal dementia patients and 576 local controls in all coding exons of CHCHD10 by Sanger sequencing. We identified a previously reported p.P34S variant that is also present in neurologically healthy controls (p = 0.58). Our results suggest that CHCHD10 is not a primary cause of ALS in UK cases.
Assuntos
Esclerose Lateral Amiotrófica/genética , Estudos de Associação Genética , Variação Genética/genética , Proteínas Mitocondriais/genética , Estudos de Coortes , Éxons/genética , Feminino , Humanos , Masculino , Fases de Leitura Aberta/genética , Análise de Sequência de DNA/métodos , Reino UnidoRESUMO
Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.
Assuntos
Esclerose Lateral Amiotrófica/genética , Autofagia/genética , Exoma/genética , Predisposição Genética para Doença , Proteínas Serina-Treonina Quinases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ciclo Celular , Feminino , Genes , Estudos de Associação Genética , Humanos , Masculino , Proteínas de Membrana Transportadoras , Pessoa de Meia-Idade , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Risco , Análise de Sequência de DNA , Proteína Sequestossoma-1 , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Adulto JovemRESUMO
Mutations in the gene encoding the RNA-binding protein fused in sarcoma (FUS) account for 4 - 5% of familial cases of amyotrophic lateral sclerosis (ALS). We describe the identification and in vitro cellular characterization of a genetic mutation in a family in which the index case, and subsequently her two children, each developed rapidly progressive ALS at a young age and died within a year of onset. Exome capture and sequencing revealed a mutation in the FUS gene consisting of a 2-bp deletion, c.1509_1510delAG, resulting in a predicted truncated protein, p.G504Wfs * 12, lacking the nuclear localization signal. Expression of this mutation in HEK293 and NSC-34 cells demonstrated severe cytoplasmic mislocalization of mutant FUS, and colocalization with stress granules when compared to wild-type, R521C and P525L mutant FUS. This study provides further evidence of a broad correlation between clinical severity of FUS-related ALS and mislocalization of the protein to the cytoplasm.
Assuntos
Esclerose Lateral Amiotrófica/genética , Predisposição Genética para Doença/genética , Mutação/genética , Proteína FUS de Ligação a RNA/genética , Adolescente , Idoso , Análise Mutacional de DNA , Progressão da Doença , Saúde da Família , Feminino , Células HEK293 , Humanos , Masculino , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transfecção , Adulto JovemRESUMO
Exome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an exome-wide rare variant burden analysis of 363 index cases with familial ALS (FALS). The results revealed an excess of patient variants within TUBA4A, the gene encoding the Tubulin, Alpha 4A protein. Analysis of a further 272 FALS cases and 5,510 internal controls confirmed the overrepresentation as statistically significant and replicable. Functional analyses revealed that TUBA4A mutants destabilize the microtubule network, diminishing its repolymerization capability. These results further emphasize the role of cytoskeletal defects in ALS and demonstrate the power of gene-based rare variant analyses in situations where causal genes cannot be identified through traditional segregation analysis.
Assuntos
Esclerose Lateral Amiotrófica/genética , Exoma/genética , Predisposição Genética para Doença , Mutação/genética , Tubulina (Proteína)/genética , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Neurônios/metabolismo , Análise de Sequência de DNA , Tubulina (Proteína)/metabolismoRESUMO
Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. Individuals with ALS rapidly progress to paralysis and die from respiratory failure within 3 to 5 years after symptom onset. Epidemiological factors explain only a modest amount of the risk for ALS. However, there is growing evidence of a strong genetic component to both familial and sporadic ALS risk. The International Consortium on Amyotrophic Lateral Sclerosis Genetics was established to bring together existing genome-wide association cohorts and identify sporadic ALS susceptibility and age at symptom onset loci. Here, we report the results of a meta-analysis of the International Consortium on Amyotrophic Lateral Sclerosis Genetics genome-wide association samples, consisting of 4243 ALS cases and 5112 controls from 13 European ancestry cohorts from across the United States and Europe. Eight genomic regions provided evidence of association with ALS, including 9p21.2 (rs3849942, odds ratio [OR] = 1.21; p = 4.41 × 10(-7)), 17p11.2 (rs7477, OR = 1.30; p = 2.89 × 10(-7)), and 19p13 (rs12608932, OR = 1.37, p = 1.29 × 10(-7)). Six genomic regions were associated with age at onset of ALS. The strongest evidence for an age of onset locus was observed at 1p34.1, with comparable evidence at rs3011225 (R(2)(partial) = 0.0061; p = 6.59 × 10(-8)) and rs803675 (R(2)(partial) = 0.0060; p = 6.96 × 10(-8)). These associations were consistent across all 13 cohorts. For rs3011225, individuals with at least 1 copy of the minor allele had an earlier average age of onset of over 2 years. Identifying the underlying pathways influencing susceptibility to and age at onset of ALS may provide insight into the pathogenic mechanisms and motivate new pharmacologic targets for this fatal neurodegenerative disease.
Assuntos
Idade de Início , Esclerose Lateral Amiotrófica/genética , Cromossomos Humanos Par 1/genética , Predisposição Genética para Doença , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/epidemiologia , Europa (Continente)/epidemiologia , Feminino , Genótipo , Humanos , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Estados Unidos/epidemiologiaRESUMO
Variants within the optineurin gene (OPTN) are recognized as causative mutations for primary open angle glaucoma. However, 4 different nonsynonymous and 3 different exonic deletion OPTN mutations have recently been identified in Japanese amyotrophic lateral sclerosis (ALS) patients. We sought to characterize OPTN genetic variation in a British cohort of ALS cases of Northern European origin. The coding portion of the gene (exons 4-16) was sequenced in a minimum of 75 familial and 120 sporadic ALS patients and an additional 300 sporadic cases in exons previously identified as harboring mutations in Northern European ALS patients. Ten variants were identified, 8 of which are present in single nucleotide polymorphism databases. Two novel synonymous changes were detected in exon 6 from 2 familial ALS cases. These are not predicted to alter splicing and are therefore unlikely to be pathogenic. We conclude that OPTN mutations associated with ALS are rare in British ALS patients.