Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
PLoS Comput Biol ; 19(10): e1010768, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871133

RESUMO

Tissue Forge is an open-source interactive environment for particle-based physics, chemistry and biology modeling and simulation. Tissue Forge allows users to create, simulate and explore models and virtual experiments based on soft condensed matter physics at multiple scales, from the molecular to the multicellular, using a simple, consistent interface. While Tissue Forge is designed to simplify solving problems in complex subcellular, cellular and tissue biophysics, it supports applications ranging from classic molecular dynamics to agent-based multicellular systems with dynamic populations. Tissue Forge users can build and interact with models and simulations in real-time and change simulation details during execution, or execute simulations off-screen and/or remotely in high-performance computing environments. Tissue Forge provides a growing library of built-in model components along with support for user-specified models during the development and application of custom, agent-based models. Tissue Forge includes an extensive Python API for model and simulation specification via Python scripts, an IPython console and a Jupyter Notebook, as well as C and C++ APIs for integrated applications with other software tools. Tissue Forge supports installations on 64-bit Windows, Linux and MacOS systems and is available for local installation via conda.


Assuntos
Física , Software , Simulação por Computador , Biofísica
2.
J Anat ; 242(3): 417-435, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36423208

RESUMO

Somites are transient structures derived from the pre-somitic mesoderm (PSM), involving mesenchyme-to-epithelial transition (MET) where the cells change their shape and polarize. Using Scanning electron microscopy (SEM), immunocytochemistry and confocal microscopy, we study the progression of these events along the tail-to-head axis of the embryo, which mirrors the progression of somitogenesis (younger cells located more caudally). SEM revealed that PSM epithelialization is a gradual process, which begins much earlier than previously thought, starting with the dorsalmost cells, then the medial ones, and then, simultaneously, the ventral and lateral cells, before a somite fully separates from the PSM. The core (internal) cells of the PSM and somites never epithelialize, which suggests that the core cells could be 'trapped' within the somitocoele after cells at the surfaces of the PSM undergo MET. Three-dimensional imaging of the distribution of the cell polarity markers PKCζ, PAR3, ZO1, the Golgi marker GM130 and the apical marker N-cadherin reveal that the pattern of polarization is distinctive for each marker and for each surface of the PSM, but the order of these events is not the same as the progression of cell elongation. These observations challenge some assumptions underlying existing models of somite formation.


Assuntos
Mesoderma , Somitos , Morfogênese , Caderinas/metabolismo , Desenvolvimento Embrionário
3.
J Theor Biol ; 532: 110918, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34592264

RESUMO

Respiratory viral infections pose a serious public health concern, from mild seasonal influenza to pandemics like those of SARS-CoV-2. Spatiotemporal dynamics of viral infection impact nearly all aspects of the progression of a viral infection, like the dependence of viral replication rates on the type of cell and pathogen, the strength of the immune response and localization of infection. Mathematical modeling is often used to describe respiratory viral infections and the immune response to them using ordinary differential equation (ODE) models. However, ODE models neglect spatially-resolved biophysical mechanisms like lesion shape and the details of viral transport, and so cannot model spatial effects of a viral infection and immune response. In this work, we develop a multiscale, multicellular spatiotemporal model of influenza infection and immune response by combining non-spatial ODE modeling and spatial, cell-based modeling. We employ cellularization, a recently developed method for generating spatial, cell-based, stochastic models from non-spatial ODE models, to generate much of our model from a calibrated ODE model that describes infection, death and recovery of susceptible cells and innate and adaptive responses during influenza infection, and develop models of cell migration and other mechanisms not explicitly described by the ODE model. We determine new model parameters to generate agreement between the spatial and original ODE models under certain conditions, where simulation replicas using our model serve as microconfigurations of the ODE model, and compare results between the models to investigate the nature of viral exposure and impact of heterogeneous infection on the time-evolution of the viral infection. We found that using spatially homogeneous initial exposure conditions consistently with those employed during calibration of the ODE model generates far less severe infection, and that local exposure to virus must be multiple orders of magnitude greater than a uniformly applied exposure to all available susceptible cells. This strongly suggests a prominent role of localization of exposure in influenza A infection. We propose that the particularities of the microenvironment to which a virus is introduced plays a dominant role in disease onset and progression, and that spatially resolved models like ours may be important to better understand and more reliably predict future health states based on susceptibility of potential lesion sites using spatially resolved patient data of the state of an infection. We can readily integrate the immune response components of our model into other modeling and simulation frameworks of viral infection dynamics that do detailed modeling of other mechanisms like viral internalization and intracellular viral replication dynamics, which are not explicitly represented in the ODE model. We can also combine our model with available experimental data and modeling of exposure scenarios and spatiotemporal aspects of mechanisms like mucociliary clearance that are only implicitly described by the ODE model, which would significantly improve the ability of our model to present spatially resolved predictions about the progression of influenza infection and immune response.


Assuntos
COVID-19 , Influenza Humana , Viroses , Humanos , Imunidade Inata , SARS-CoV-2
4.
PLoS Comput Biol ; 17(10): e1008874, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695114

RESUMO

Respiratory viruses present major public health challenges, as evidenced by the 1918 Spanish Flu, the 1957 H2N2, 1968 H3N2, and 2009 H1N1 influenza pandemics, and the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Severe RNA virus respiratory infections often correlate with high viral load and excessive inflammation. Understanding the dynamics of the innate immune response and its manifestations at the cell and tissue levels is vital to understanding the mechanisms of immunopathology and to developing strain-independent treatments. Here, we present a novel spatialized multicellular computational model of RNA virus infection and the type-I interferon-mediated antiviral response that it induces within lung epithelial cells. The model is built using the CompuCell3D multicellular simulation environment and is parameterized using data from influenza virus-infected cell cultures. Consistent with experimental observations, it exhibits either linear radial growth of viral plaques or arrested plaque growth depending on the local concentration of type I interferons. The model suggests that modifying the activity of signaling molecules in the JAK/STAT pathway or altering the ratio of the diffusion lengths of interferon and virus in the cell culture could lead to plaque growth arrest. The dependence of plaque growth arrest on diffusion lengths highlights the importance of developing validated spatial models of cytokine signaling and the need for in vitro measurement of these diffusion coefficients. Sensitivity analyses under conditions leading to continuous or arrested plaque growth found that plaque growth is more sensitive to variations of most parameters and more likely to have identifiable model parameters when conditions lead to plaque arrest. This result suggests that cytokine assay measurements may be most informative under conditions leading to arrested plaque growth. The model is easy to extend to include SARS-CoV-2-specific mechanisms or to use as a component in models linking epithelial cell signaling to systemic immune models.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Interferons , Infecções por Vírus de RNA , Vírus de RNA , Replicação Viral , Células Cultivadas , Biologia Computacional , Células Epiteliais/imunologia , Humanos , Imunidade Inata/imunologia , Interferons/imunologia , Interferons/metabolismo , Pulmão/citologia , Pulmão/imunologia , Modelos Biológicos , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/imunologia , Vírus de RNA/fisiologia , Replicação Viral/imunologia , Replicação Viral/fisiologia
5.
BMC Biol ; 19(1): 196, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496857

RESUMO

BACKGROUND: The biophysics of an organism span multiple scales from subcellular to organismal and include processes characterized by spatial properties, such as the diffusion of molecules, cell migration, and flow of intravenous fluids. Mathematical biology seeks to explain biophysical processes in mathematical terms at, and across, all relevant spatial and temporal scales, through the generation of representative models. While non-spatial, ordinary differential equation (ODE) models are often used and readily calibrated to experimental data, they do not explicitly represent the spatial and stochastic features of a biological system, limiting their insights and applications. However, spatial models describing biological systems with spatial information are mathematically complex and computationally expensive, which limits the ability to calibrate and deploy them and highlights the need for simpler methods able to model the spatial features of biological systems. RESULTS: In this work, we develop a formal method for deriving cell-based, spatial, multicellular models from ODE models of population dynamics in biological systems, and vice versa. We provide examples of generating spatiotemporal, multicellular models from ODE models of viral infection and immune response. In these models, the determinants of agreement of spatial and non-spatial models are the degree of spatial heterogeneity in viral production and rates of extracellular viral diffusion and decay. We show how ODE model parameters can implicitly represent spatial parameters, and cell-based spatial models can generate uncertain predictions through sensitivity to stochastic cellular events, which is not a feature of ODE models. Using our method, we can test ODE models in a multicellular, spatial context and translate information to and from non-spatial and spatial models, which help to employ spatiotemporal multicellular models using calibrated ODE model parameters. We additionally investigate objects and processes implicitly represented by ODE model terms and parameters and improve the reproducibility of spatial, stochastic models. CONCLUSION: We developed and demonstrate a method for generating spatiotemporal, multicellular models from non-spatial population dynamics models of multicellular systems. We envision employing our method to generate new ODE model terms from spatiotemporal and multicellular models, recast popular ODE models on a cellular basis, and generate better models for critical applications where spatial and stochastic features affect outcomes.


Assuntos
Viroses , Simulação por Computador , Humanos , Modelos Biológicos , Dinâmica Populacional , Reprodutibilidade dos Testes
6.
Physica A ; 5872022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36937094

RESUMO

Active-Matter models commonly consider particles with overdamped dynamics subject to a force (speed) with constant modulus and random direction. Some models also include random noise in particle displacement (a Wiener process), resulting in diffusive motion at short time scales. On the other hand, Ornstein-Uhlenbeck processes apply Langevin dynamics to the particles' velocity and predict motion that is not diffusive at short time scales. Experiments show that migrating cells have gradually varying speeds at intermediate and long time scales, with short-time diffusive behavior. While Ornstein-Uhlenbeck processes can describe the moderate-and long-time speed variation, Active-Matter models for over-damped particles can explain the short-time diffusive behavior. Isotropic models cannot explain both regimes, because short-time diffusion renders instantaneous velocity ill-defined, and prevents the use of dynamical equations that require velocity time-derivatives. On the other hand, both models correctly describe some of the different temporal regimes seen in migrating biological cells and must, in the appropriate limit, yield the same observable predictions. Here we propose and solve analytically an Anisotropic Ornstein-Uhlenbeck process for polarized particles, with Langevin dynamics governing the particle's movement in the polarization direction and a Wiener process governing displacement in the orthogonal direction. Our characterization provides a theoretically robust way to compare movement in dimensionless simulations to movement in experiments in which measurements have meaningful space and time units. We also propose an approach to deal with inevitable finite-precision effects in experiments and simulations.

7.
PLoS Comput Biol ; 16(12): e1008451, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347439

RESUMO

Simulations of tissue-specific effects of primary acute viral infections like COVID-19 are essential for understanding disease outcomes and optimizing therapies. Such simulations need to support continuous updating in response to rapid advances in understanding of infection mechanisms, and parallel development of components by multiple groups. We present an open-source platform for multiscale spatiotemporal simulation of an epithelial tissue, viral infection, cellular immune response and tissue damage, specifically designed to be modular and extensible to support continuous updating and parallel development. The base simulation of a simplified patch of epithelial tissue and immune response exhibits distinct patterns of infection dynamics from widespread infection, to recurrence, to clearance. Slower viral internalization and faster immune-cell recruitment slow infection and promote containment. Because antiviral drugs can have side effects and show reduced clinical effectiveness when given later during infection, we studied the effects on progression of treatment potency and time-of-first treatment after infection. In simulations, even a low potency therapy with a drug which reduces the replication rate of viral RNA greatly decreases the total tissue damage and virus burden when given near the beginning of infection. Many combinations of dosage and treatment time lead to stochastic outcomes, with some simulation replicas showing clearance or control (treatment success), while others show rapid infection of all epithelial cells (treatment failure). Thus, while a high potency therapy usually is less effective when given later, treatments at late times are occasionally effective. We illustrate how to extend the platform to model specific virus types (e.g., hepatitis C) and add additional cellular mechanisms (tissue recovery and variable cell susceptibility to infection), using our software modules and publicly-available software repository.


Assuntos
Biologia Computacional/métodos , Epitélio , Modelos Imunológicos , Viroses , Antivirais/uso terapêutico , COVID-19/imunologia , Simulação por Computador , Epitélio/imunologia , Epitélio/virologia , Hepacivirus/imunologia , Hepatite C/tratamento farmacológico , Hepatite C/imunologia , Humanos , SARS-CoV-2/imunologia , Viroses/tratamento farmacológico , Viroses/imunologia
8.
Biophys J ; 118(11): 2801-2815, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32407685

RESUMO

Mesenchymal cell crawling is a critical process in normal development, in tissue function, and in many diseases. Quantitatively predictive numerical simulations of cell crawling thus have multiple scientific, medical, and technological applications. However, we still lack a low-computational-cost approach to simulate mesenchymal three-dimensional (3D) cell crawling. Here, we develop a computationally tractable 3D model (implemented as a simulation in the CompuCell3D simulation environment) of mesenchymal cells crawling on a two-dimensional substrate. The Fürth equation, the usual characterization of mean-squared displacement (MSD) curves for migrating cells, describes a motion in which, for increasing time intervals, cell movement transitions from a ballistic to a diffusive regime. Recent experiments have shown that for very short time intervals, cells exhibit an additional fast diffusive regime. Our simulations' MSD curves reproduce the three experimentally observed temporal regimes, with fast diffusion for short time intervals, slow diffusion for long time intervals, and intermediate time -interval-ballistic motion. The resulting parameterization of the trajectories for both experiments and simulations allows the definition of time- and length scales that translate between computational and laboratory units. Rescaling by these scales allows direct quantitative comparisons among MSD curves and between velocity autocorrelation functions from experiments and simulations. Although our simulations replicate experimentally observed spontaneous symmetry breaking, short-timescale diffusive motion, and spontaneous cell-motion reorientation, their computational cost is low, allowing their use in multiscale virtual-tissue simulations. Comparisons between experimental and simulated cell motion support the hypothesis that short-time actomyosin dynamics affects longer-time cell motility. The success of the base cell-migration simulation model suggests its future application in more complex situations, including chemotaxis, migration through complex 3D matrices, and collective cell motion.


Assuntos
Modelos Biológicos , Movimento Celular , Simulação por Computador , Difusão , Movimento (Física)
9.
Phys Biol ; 16(4): 041005, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30991381

RESUMO

Whether the nom de guerre is Mathematical Oncology, Computational or Systems Biology, Theoretical Biology, Evolutionary Oncology, Bioinformatics, or simply Basic Science, there is no denying that mathematics continues to play an increasingly prominent role in cancer research. Mathematical Oncology-defined here simply as the use of mathematics in cancer research-complements and overlaps with a number of other fields that rely on mathematics as a core methodology. As a result, Mathematical Oncology has a broad scope, ranging from theoretical studies to clinical trials designed with mathematical models. This Roadmap differentiates Mathematical Oncology from related fields and demonstrates specific areas of focus within this unique field of research. The dominant theme of this Roadmap is the personalization of medicine through mathematics, modelling, and simulation. This is achieved through the use of patient-specific clinical data to: develop individualized screening strategies to detect cancer earlier; make predictions of response to therapy; design adaptive, patient-specific treatment plans to overcome therapy resistance; and establish domain-specific standards to share model predictions and to make models and simulations reproducible. The cover art for this Roadmap was chosen as an apt metaphor for the beautiful, strange, and evolving relationship between mathematics and cancer.


Assuntos
Matemática/métodos , Oncologia/métodos , Biologia de Sistemas/métodos , Biologia Computacional , Simulação por Computador , Humanos , Modelos Biológicos , Modelos Teóricos , Neoplasias/diagnóstico , Neoplasias/terapia , Análise de Célula Única/métodos
10.
Microvasc Res ; 123: 7-13, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30502365

RESUMO

Microvascular perfusion dynamics are vital to physiological function and are frequently dysregulated in injury and disease. Typically studies measure microvascular flow in a few selected vascular segments over limited time, failing to capture spatial and temporal variability. To quantify microvascular flow in a more complete and unbiased way we developed STAFF (Spatial Temporal Analysis of Fieldwise Flow), a macro for FIJI open-source image analysis software. Using high-speed microvascular flow movies, STAFF generates kymographs for every time interval for every vascular segment, calculates flow velocities from red blood cell shadow angles, and outputs the data as color-coded velocity map movies and spreadsheets. In untreated mice, analyses demonstrated profound variation even between adjacent sinusoids over seconds. In acetaminophen-treated mice we detected flow reduction localized to pericentral regions. STAFF is a powerful new tool capable of providing novel insights by enabling measurement of the complex spatiotemporal dynamics of microvascular flow.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Hemodinâmica , Interpretação de Imagem Assistida por Computador/métodos , Microscopia Intravital/métodos , Circulação Hepática , Fígado/irrigação sanguínea , Microcirculação , Microvasos/fisiopatologia , Imagem com Lapso de Tempo/métodos , Acetaminofen , Animais , Automação , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Eritrócitos , Quimografia , Masculino , Camundongos Endogâmicos C57BL , Fluxo Sanguíneo Regional , Software , Análise Espaço-Temporal , Fatores de Tempo
11.
Mol Syst Biol ; 13(4): 927, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28455349

RESUMO

The intestinal epithelium is the fastest regenerative tissue in the body, fueled by fast-cycling stem cells. The number and identity of these dividing and migrating stem cells are maintained by a mosaic pattern at the base of the crypt. How the underlying regulatory scheme manages this dynamic stem cell niche is not entirely clear. We stimulated intestinal organoids with Notch ligands and inhibitors and discovered that intestinal stem cells employ a positive feedback mechanism via direct Notch binding to the second intron of the Notch1 gene. Inactivation of the positive feedback by CRISPR/Cas9 mutation of the binding sequence alters the mosaic stem cell niche pattern and hinders regeneration in organoids. Dynamical system analysis and agent-based multiscale stochastic modeling suggest that the positive feedback enhances the robustness of Notch-mediated niche patterning. This study highlights the importance of feedback mechanisms in spatiotemporal control of the stem cell niche.


Assuntos
Retroalimentação Fisiológica , Intestinos/citologia , Receptor Notch1/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sítios de Ligação , Autorrenovação Celular , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Mutação , Organoides/metabolismo , Receptor Notch1/química , Transdução de Sinais , Nicho de Células-Tronco , Processos Estocásticos , Biologia de Sistemas/métodos
12.
Phys Biol ; 15(5): 056005, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29714713

RESUMO

Virus capsids are polymeric protein shells that protect the viral cargo. About half of known virus families have icosahedral capsids that self-assemble from tens to thousands of subunits. Capsid disassembly is critical to the lifecycles of many viruses yet is poorly understood. Here, we apply a graph and percolation theory to examine the effect of removing capsid subunits on capsid stability and fragmentation. Based on the structure of the icosahedral capsid of hepatitis B virus (HBV), we constructed a graph of rhombic subunits arranged with icosahedral symmetry. Though our approach neglects dependence on energetics, time, and molecular detail, it quantitatively predicts a percolation phase transition consistent with recent in vitro studies of HBV capsid dissociation. While the stability of the capsid graph followed a gradual quadratic decay, the rhombic tiling abruptly fragmented when we removed more than 25% of the 120 subunits, near the percolation threshold observed experimentally. This threshold may also affect results of capsid assembly, which also experimentally produces a preponderance of 90 mer intermediates, as the intermediate steps in these reactions are reversible and can thus resemble dissociation. Application of percolation theory to understanding capsid association and dissociation may prove a general approach to relating virus biology to the underlying biophysics of the virus particle.


Assuntos
Capsídeo/química , Vírus da Hepatite B/química , Transição de Fase , Proteínas do Capsídeo/química , Análise por Conglomerados , Hepatite B/virologia , Humanos , Cinética , Modelos Moleculares , Método de Monte Carlo
13.
Hum Genomics ; 10(1): 37, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27871310

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients. The complexity of ADPKD has hampered efforts to identify the mechanisms underlying its pathogenesis. No current FDA (Federal Drug Administration)-approved therapies ameliorate ADPKD progression. RESULTS: We used the de Almeida laboratory's sensitive new transcriptogram method for whole-genome gene expression data analysis to analyze microarray data from cell lines developed from cell isolates of normal kidney and of both non-cystic nephrons and cysts from the kidney of a patient with ADPKD. We compared results obtained using standard Ingenuity Volcano plot analysis, Gene Set Enrichment Analysis (GSEA) and transcriptogram analysis. Transcriptogram analysis confirmed the findings of Ingenuity, GSEA, and published analysis of ADPKD kidney data and also identified multiple new expression changes in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to cell growth, cell death, genetic information processing, nucleotide metabolism, signal transduction, immune response, response to stimulus, cellular processes, ion homeostasis and transport and cofactors, vitamins, amino acids, energy, carbohydrates, drugs, lipids, and glycans. Transcriptogram analysis also provides significance metrics which allow us to prioritize further study of these pathways. CONCLUSIONS: Transcriptogram analysis identifies novel pathways altered in ADPKD, providing new avenues to identify both ADPKD's mechanisms of pathogenesis and pharmaceutical targets to ameliorate the progression of the disease.


Assuntos
Rim Policístico Autossômico Dominante/metabolismo , Transcriptoma , Adulto , Estudos de Casos e Controles , Linhagem Celular , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
14.
PLoS Comput Biol ; 12(6): e1004952, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27322528

RESUMO

In convergent-extension (CE), a planar-polarized epithelial tissue elongates (extends) in-plane in one direction while shortening (converging) in the perpendicular in-plane direction, with the cells both elongating and intercalating along the converging axis. CE occurs during the development of most multicellular organisms. Current CE models assume cell or tissue asymmetry, but neglect the preferential filopodial activity along the convergent axis observed in many tissues. We propose a cell-based CE model based on asymmetric filopodial tension forces between cells and investigate how cell-level filopodial interactions drive tissue-level CE. The final tissue geometry depends on the balance between external rounding forces and cell-intercalation traction. Filopodial-tension CE is robust to relatively high levels of planar cell polarity misalignment and to the presence of non-active cells. Addition of a simple mechanical feedback between cells fully rescues and even improves CE of tissues with high levels of polarity misalignments. Our model extends easily to three dimensions, with either one converging and two extending axes, or two converging and one extending axes, producing distinct tissue morphologies, as observed in vivo.


Assuntos
Adesão Celular/fisiologia , Polaridade Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Pseudópodes/fisiologia , Animais , Simulação por Computador , Módulo de Elasticidade/fisiologia , Retroalimentação Fisiológica/fisiologia , Humanos , Estresse Mecânico , Resistência à Tração/fisiologia
15.
PLoS Comput Biol ; 12(6): e1004932, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27300722

RESUMO

An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.


Assuntos
Retinopatia Diabética/etiologia , Modelos Biológicos , Velocidade do Fluxo Sanguíneo , Capilares/patologia , Capilares/fisiopatologia , Adesão Celular , Biologia Computacional , Simulação por Computador , Retinopatia Diabética/patologia , Retinopatia Diabética/fisiopatologia , Progressão da Doença , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Leucócitos/patologia , Leucócitos/fisiologia , Edema Macular/etiologia , Edema Macular/patologia , Edema Macular/fisiopatologia , Oclusão da Artéria Retiniana/etiologia , Oclusão da Artéria Retiniana/patologia , Oclusão da Artéria Retiniana/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
16.
Bioinformatics ; 31(20): 3315-21, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26085503

RESUMO

MOTIVATION: This article presents libRoadRunner, an extensible, high-performance, cross-platform, open-source software library for the simulation and analysis of models expressed using Systems Biology Markup Language (SBML). SBML is the most widely used standard for representing dynamic networks, especially biochemical networks. libRoadRunner is fast enough to support large-scale problems such as tissue models, studies that require large numbers of repeated runs and interactive simulations. RESULTS: libRoadRunner is a self-contained library, able to run both as a component inside other tools via its C++ and C bindings, and interactively through its Python interface. Its Python Application Programming Interface (API) is similar to the APIs of MATLAB ( WWWMATHWORKSCOM: ) and SciPy ( HTTP//WWWSCIPYORG/: ), making it fast and easy to learn. libRoadRunner uses a custom Just-In-Time (JIT) compiler built on the widely used LLVM JIT compiler framework. It compiles SBML-specified models directly into native machine code for a variety of processors, making it appropriate for solving extremely large models or repeated runs. libRoadRunner is flexible, supporting the bulk of the SBML specification (except for delay and non-linear algebraic equations) including several SBML extensions (composition and distributions). It offers multiple deterministic and stochastic integrators, as well as tools for steady-state analysis, stability analysis and structural analysis of the stoichiometric matrix. AVAILABILITY AND IMPLEMENTATION: libRoadRunner binary distributions are available for Mac OS X, Linux and Windows. The library is licensed under Apache License Version 2.0. libRoadRunner is also available for ARM-based computers such as the Raspberry Pi. http://www.libroadrunner.org provides online documentation, full build instructions, binaries and a git source repository. CONTACTS: hsauro@u.washington.edu or somogyie@indiana.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Simulação por Computador , Modelos Teóricos , Software , Biologia de Sistemas/métodos , Adesão Celular/fisiologia , Humanos , Fígado/metabolismo , Modelos Biológicos , Neurônios/metabolismo , Linguagens de Programação
17.
Bioinformatics ; 30(16): 2367-74, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24755304

RESUMO

MOTIVATION: Currently, there are no ontologies capable of describing both the spatial organization of groups of cells and the behaviors of those cells. The lack of a formalized method for describing the spatiality and intrinsic biological behaviors of cells makes it difficult to adequately describe cells, tissues and organs as spatial objects in living tissues, in vitro assays and in computational models of tissues. RESULTS: We have developed an OWL-2 ontology to describe the intrinsic physical and biological characteristics of cells and tissues. The Cell Behavior Ontology (CBO) provides a basis for describing the spatial and observable behaviors of cells and extracellular components suitable for describing in vivo, in vitro and in silico multicell systems. Using the CBO, a modeler can create a meta-model of a simulation of a biological model and link that meta-model to experiment or simulation results. Annotation of a multicell model and its computational representation, using the CBO, makes the statement of the underlying biology explicit. The formal representation of such biological abstraction facilitates the validation, falsification, discovery, sharing and reuse of both models and experimental data. AVAILABILITY AND IMPLEMENTATION: The CBO, developed using Protégé 4, is available at http://cbo.biocomplexity.indiana.edu/cbo/ and at BioPortal (http://bioportal.bioontology.org/ontologies/CBO).


Assuntos
Ontologias Biológicas , Fenômenos Fisiológicos Celulares , Modelos Biológicos , Simulação por Computador
18.
Colloids Surf A Physicochem Eng Asp ; 473: 109-114, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27630449

RESUMO

In wet liquid foams, slow diffusion of gas through bubble walls changes bubble pressure, volume and wall curvature. Large bubbles grow at the expenses of smaller ones. The smaller the bubble, the faster it shrinks. As the number of bubbles in a given volume decreases in time, the average bubble size increases: i.e. the foam coarsens. During coarsening, bubbles also move relative to each other, changing bubble topology and shape, while liquid moves within the regions separating the bubbles. Analyzing the combined effects of these mechanisms requires examining a volume with enough bubbles to provide appropriate statistics throughout coarsening. Using a Cellular Potts model, we simulate these mechanisms during the evolution of three-dimensional foams with wetnesses of ϕ = 0.00, 0.05 and 0.20. We represent the liquid phase as an ensemble of many small fluid particles, which allows us to monitor liquid flow in the region between bubbles. The simulations begin with 2 × 105 bubbles for ϕ = 0.00 and 1.25 × 105 bubbles for ϕ = 0.05 and 0.20, allowing us to track the distribution functions for bubble size, topology and growth rate over two and a half decades of volume change. All simulations eventually reach a self-similar growth regime, with the distribution functions time independent and the number of bubbles decreasing with time as a power law whose exponent depends on the wetness.

19.
Dev Dyn ; 242(5): 518-26, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23417958

RESUMO

BACKGROUND: Zebrafish intersegmental vessel (ISV) growth is widely used to study angiogenesis and to screen drugs and toxins that perturb angiogenesis. Most current ISV growth assays observe the presence or absence of ISVs or perturbation of ISV morphology but do not measure growth dynamics. We have developed a four-dimensional (4D, space plus time) quantitative analysis of angiogenic sprout growth dynamics for characterization of both normal and perturbed growth. RESULTS: We tracked the positions of the ISV base and tip for each ISV sprout in 4D. Despite immobilization, zebrafish embryos translocated globally and non-uniformly during development. We used displacement of the ISV base and the angle between the ISV and the dorsal aorta to correct for displacement and rotation during development. From corrected tip cell coordinates, we computed average ISV trajectories. We fitted a quadratic curve to the average ISV trajectories to produce a canonical ISV trajectory for each experimental group, arsenic treated and untreated. From the canonical ISV trajectories, we computed curvature, average directed migration speed and directionality. Canonical trajectories from treated (arsenic exposed) and untreated groups differed in curvature, average directed migration speed and angle between the ISV and dorsal aorta. CONCLUSIONS: 4D analysis of angiogenic sprout growth dynamics: (1) Allows quantitative assessment of ISV growth dynamics and perturbation, and (2) provides critical inputs for computational models of angiogenesis.


Assuntos
Padronização Corporal/fisiologia , Imageamento Tridimensional/métodos , Neovascularização Fisiológica/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Arsênio/farmacologia , Arsênio/toxicidade , Padronização Corporal/efeitos dos fármacos , Movimento Celular/fisiologia , Rastreamento de Células/métodos , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/efeitos dos fármacos , Poluentes Ambientais/farmacologia , Poluentes Ambientais/toxicidade , Cinética , Microscopia de Fluorescência , Movimento (Física) , Neovascularização Fisiológica/efeitos dos fármacos , Fatores de Tempo , Imagem com Lapso de Tempo/métodos , Peixe-Zebra/genética
20.
PLoS One ; 18(6): e0287736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384721

RESUMO

Generative models rely on the idea that data can be represented in terms of latent variables which are uncorrelated by definition. Lack of correlation among the latent variable support is important because it suggests that the latent-space manifold is simpler to understand and manipulate than the real-space representation. Many types of generative model are used in deep learning, e.g., variational autoencoders (VAEs) and generative adversarial networks (GANs). Based on the idea that the latent space behaves like a vector space Radford et al. (2015), we ask whether we can expand the latent space representation of our data elements in terms of an orthonormal basis set. Here we propose a method to build a set of linearly independent vectors in the latent space of a trained GAN, which we call quasi-eigenvectors. These quasi-eigenvectors have two key properties: i) They span the latent space, ii) A set of these quasi-eigenvectors map to each of the labeled features one-to-one. We show that in the case of the MNIST image data set, while the number of dimensions in latent space is large by design, 98% of the data in real space map to a sub-domain of latent space of dimensionality equal to the number of labels. We then show how the quasi-eigenvectors can be used for Latent Spectral Decomposition (LSD). We apply LSD to denoise MNIST images. Finally, using the quasi-eigenvectors, we construct rotation matrices in latent space which map to feature transformations in real space. Overall, from quasi-eigenvectors we gain insight regarding the latent space topology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa