Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Citosol/metabolismo , Regulação para Baixo , Neoplasias Pulmonares/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Células A549 , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proteínas Mitocondriais/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidoresRESUMO
In Saccharomyces cerevisiae, Core Factor (CF) is a key evolutionarily conserved transcription initiation factor that helps recruit RNA polymerase I (Pol I) to the ribosomal DNA (rDNA) promoter. Upregulated Pol I transcription has been linked to many cancers, and targeting Pol I is an attractive and emerging anti-cancer strategy. Using yeast as a model system, we characterized how CF binds to the Pol I promoter by electrophoretic mobility shift assays (EMSA). Synthetic DNA competitors along with anti-tumor drugs and nucleic acid stains that act as DNA groove blockers were used to discover the binding preference of yeast CF. Our results show that CF employs a unique binding mechanism where it prefers the GC-rich minor groove within the rDNA promoter. In addition, we show that yeast CF is able to bind to the human rDNA promoter sequence that is divergent in DNA sequence and demonstrate CF sensitivity to the human specific Pol I inhibitor, CX-5461. Finally, we show that the human Core Promoter Element (CPE) can functionally replace the yeast Core Element (CE) in vivo when aligned by conserved DNA structural features rather than DNA sequence. Together, these findings suggest that the yeast CF and the human ortholog Selectivity Factor 1 (SL1) use an evolutionarily conserved, structure-based mechanism to target DNA. Their shared mechanism may offer a new avenue in using yeast to explore current and future Pol I anti-cancer compounds.