RESUMO
Reactive oxygen species (ROS) are an integral part of many anticancer therapies. Fenton-like processes involving reactions of peroxides with transition metal ions are a particularly potent and tunable subset of ROS approaches. Precise on-demand dosing of the Fenton reaction is an area of great interest. Herein, we present a concept of an electrochemical faradaic pixel that produces controlled amounts of ROS via a Fenton-like process. The pixel comprises a cathode and anode, where the cathode reduces dissolved oxygen to hydrogen peroxide. The anode is made of chromium, which is electrochemically corroded to yield chromium ions. Peroxide and chromium interact to form a highly oxidizing mixture of hydroxyl radicals and hexavalent Cr ions. After benchmarking the electrochemical properties of this type of device, we demonstrate how it can be used under inâ vitro conditions with a cancer cell line. The faradaic Fenton pixel is a general and scalable concept that can be used for on-demand delivery of redox-active products for controlling a physiological outcome.
RESUMO
Optically driven electronic neuromodulation devices are a novel tool in basic research and offer new prospects in medical therapeutic applications. Optimal operation of such devices requires efficient light capture and charge generation, effective electrical communication across the device's bioelectronic interface, conformal adhesion to the target tissue, and mechanical stability of the device during the lifetime of the implant-all of which can be tuned by spatial structuring of the device. We demonstrate a 3D structured opto-bioelectronic device-an organic electrolytic photocapacitor spatially designed by depositing the active device layers on an inverted micropyramid-shaped substrate. Ultrathin, transparent, and flexible micropyramid-shaped foil was fabricated by chemical vapour deposition of parylene C on silicon moulds containing arrays of inverted micropyramids, followed by a peel-off procedure. The capacitive current delivered by the devices showed a strong dependency on the underlying spatial structure. The device performance was evaluated by numerical modelling. We propose that the developed numerical model can be used as a basis for the design of future functional 3D design of opto-bioelectronic devices and electrodes.
RESUMO
Organic semiconductors have recently emerged as promising catalytic materials for oxygen reduction to hydrogen peroxide, H2O2, a chemical of great importance in industry as well as biology. While examples of organic semiconductor-mediated photocatalytic and electrocatalytic processes for H2O2 production become more numerous and improve in performance, fundamental understanding of the reaction mechanisms at play have been explored far less. The aim of the present work is to computationally test hypotheses of how selective oxygen reduction to H2O2 generally occurs on carbonyl dyes and pigments. As an example material, we consider epindolidione (EPI), an industrial pigment with demonstrated semiconductor properties, which photocatalytic activity in oxygen reduction reaction (ORR) and thereby producing hydrogen peroxide (H2O2) in low pH environment has been recently experimentally demonstrated. In this work, the ability of the reduced form of EPI, viz. EPI-2H (which was formed after a photoinduced 2e-/2H+ process), to reduce molecular triplet oxygen to peroxide and the possible mechanism of this reaction are computationally investigated using density functional theory. In the main reaction pathway, the reduction of O2 to H2O2 reaction occurs via abstraction of one of the hydrogen atoms of EPI-2H by triplet dioxygen to produce an intermediate complex consisting of the radicals of hydrogen peroxide (HOOâ¢) and EPI-H⢠at the initial stage. HOO⢠thus released can abstract another hydrogen atom from EPI-H⢠to produce H2O2 and regenerates EPI; otherwise, it can enter another pathway to abstract hydrogen from a neighboring EPI-2H to form EPI-H⢠and H2O2. EPI, after reduction, thus plays in ORR the role of hydrogen atom transfer (HAT) agent via its OH group, similar to anthraquinone in the industrial process, while HAT from its amino hydrogen is found unfavorable.
RESUMO
Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 µm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g(-1). To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition-from solution at low temperature-of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles-from airplanes to quadcopters and weather balloons-for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.
RESUMO
We report on the photophysics of N,N'-di(t-butoxycarbonyl)indigos (tBOC indigos), finding that reversible photochemical trans-cis and cis-trans isomerization reactions proceed with high quantum yields (0.10-0.46). Absorption of wavelengths in the 500-600 nm region induces trans-cis isomerism, while blue light leads to the reverse cis-trans process. Like their parent indigos, trans-BOC indigos have low fluorescence yields (â¼1 × 10(-3)), while the cis isomers have no measurable emission. These compounds are the first examples of photoisomerizable indigoid dyes in which photochemical isomerism effectively outcompetes radiative decay processes. Though indigo dyes typically have poor solubility in organic solvents, tBOC indigos can be dissolved at concentrations up to 8 w% in common organic solvents like acetone. Furthermore, unlike other photoisomerizable indigoids, tBOC indigos are not sensitive to quenching by proton and electron donors. These features, combined with high quantum yields of reversible photoisomerism induced by relatively low-energy photons (â¼2 eV), make tBOC indigo derivatives potentially interesting for photochromic applications, such as photomechanically actuated materials.
RESUMO
Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants.
RESUMO
Diketopyrrolopyrroles (DPPs) have recently gained attention as building-blocks for organic semiconducting polymers and small molecules, however the semiconducting properties of their hydrogen-bonded (H-bonded) pigment forms have not been explored. Herein we report on the performance of three archetypical H-bonded DPP pigments, which show ambipolar carrier mobilities in the range 0.01-0.06 cm2/V s in organic field-effect transistors. Their semiconducting properties are correlated with crystal structure, where an H-bonded crystal lattice supports close and relatively cofacial π-π stacking. To better understand transport in these systems, density functional theory calculations were carried out, indicating theoretical maximum ambipolar mobility values of â¼0.3 cm2/V s. Based on these experimental and theoretical results, H-bonded DPPs represent a viable alternative to more established DPP-containing polymers and small molecules where H-bonding is blocked by N-alkylation.
RESUMO
Limiting anthropogenic carbon dioxide emissions constitutes a major issue faced by scientists today. Herein we report an efficient way of controlled capture and release of carbon dioxide using nature inspired, cheap, abundant and non-toxic, industrial pigment namely, quinacridone. An electrochemically reduced electrode consisting of a quinacridone thin film (ca. 100â nm thick) on an ITO support forms a quinacridone carbonate salt. The captured CO2 can be released by electrochemical oxidation. The amount of captured CO2 was quantified by FT-IR. The uptake value for electrochemical release process was 4.61â mmol g(-1). This value is among the highest reported uptake efficiencies for electrochemical CO2 capture. For comparison, the state-of-the-art aqueous amine industrial capture process has an uptake efficiency of ca. 8â mmol g(-1).
RESUMO
Objective.Producing realistic numerical models of neurostimulation electrodes in contact with the electrolyte and tissue, for use in time-domain finite element method simulations while maintaining a reasonable computational burden remains a challenge. We aim to provide a straightforward experimental-theoretical hybrid approach for common electrode materials (Ti, TiN, ITO, Au, Pt, IrOx) that are relevant to the research field of bioelectronics, along with all the information necessary to replicate our approach in arbitrary geometry for real-life experimental applications.Approach.We used electrochemical impedance spectroscopy (EIS) to extract the electrode parameters in the AC regime under different DC biases. The pulsed electrode response was obtained by fast amperometry (FA) to optimize and verify the previously obtained electrode parameters in a COMSOL Multiphysics model. For optimization of the electrode parameters a constant phase element (CPE) needed to be implemented in time-domain.Main results.We find that the parameters obtained by EIS can be used to accurately simulate pulsed response only close to the electrode open circuit potential, while at other potentials we give corrections to the obtained parameters, based on FA measurements. We also find that for many electrodes (Au, TiN, Pt, and IrOx), it is important to implement a distributed CPE rather than an ideal capacitor for estimating the electrode double-layer capacitance. We outline and provide examples for the novel time-domain implementation of the CPE for finite element method simulations in COMSOL Multiphysics.Significance.An overview of electrode parameters for some common electrode materials can be a valuable and useful tool in numerical bioelectronics models. A provided FEM implementation model can be readily adapted to arbitrary electrode geometries and used for various applications. Finally, the presented methodology for parametrization of electrode materials can be used for any materials of interest which were not covered by this work.
Assuntos
Eletrodos , Análise de Elementos Finitos , Humanos , Simulação por Computador , Espectroscopia Dielétrica/métodos , Impedância ElétricaRESUMO
Platinum is the most widespread electrode material used for implantable biomedical and neuroelectronic devices, motivating exploring ways to improve its performance and understand its fundamental properties. Using reactive magnetron sputtering, PtOx is prepared, which upon partial reduction yields a porous thin-film form of platinum with favorable properties, notably record-low impedance values outcompeting other reports for platinum-based electrodes. It is established that its high electrochemical capacitance scales with thickness, in the way of volumetric capacitor materials like IrOx and poly(3,4-ethylenedioxythiophene), PEDOT. Unlike these two well-known analogs, however, it is found that PtOx capacitance is not caused by reversible pseudofaradaic reactions but rather due to high surface area. In contrast to IrOx, PtOx is not a reversible valence-change oxide, but rather a porous form of platinum. The findings show that this oxygen-containing form of Pt can place Pt electrodes on a level competitive with IrOx and PEDOT. Due to its relatively low cost and ease of preparation, PtOx can be a good choice for microfabricated bioelectronic devices.
Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Capacitância Elétrica , Eletrodos , Platina , Platina/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros/química , Porosidade , Propriedades de SuperfícieRESUMO
It is generally accepted that for safe use of neural interface electrodes, irreversible faradaic reactions should be avoided in favor of capacitive charge injection. However, in some cases, faradaic reactions can be desirable for controlling specific (electro)physiological outcomes or for biosensing purposes. This study aims to systematically map the basic faradaic reactions occurring at bioelectronic electrode interfaces. We analyze archetypical platinum-iridium (PtIr), the most commonly used electrode material in biomedical implants. By providing a detailed guide to these reactions and the factors that influence them, we offer a valuable resource for researchers seeking to suppress or exploit faradaic reactions in various electrode materials. We employed a combination of electrochemical techniques and direct quantification methods, including amperometric, potentiometric, and spectrophotometric assays, to measure O2, H2, pH, H2O2, Cl2/OCl-, and soluble platinum and iridium ions. We compared phosphate-buffered saline (PBS) with an unbuffered electrolyte and complex cell culture media containing proteins. Our results reveal that the "water window"âthe potential range without significant water electrolysisâvaries depending on the electrolyte used. In the culture medium that is rich with redox-active species, a window of potentials where no faradaic process occurs essentially does not exist. Under cathodic polarizations, significant pH increases (alkalization) were observed, while anodic water splitting competes with other processes in media, preventing prevalent acidification. We quantified the oxygen reduction reaction and accumulation of H2O2 as a byproduct. PtIr efficiently deoxygenates the electrolyte under low cathodic polarizations, generating local hypoxia. Under anodic polarizations, chloride oxidation competes with oxygen evolution, producing relatively high and cytotoxic concentrations of hypochlorite (OCl-) under certain conditions. These oxidative processes occur alongside PtIr dissolution through the formation of soluble salts. Our findings indicate that the conventional understanding of the water window is an oversimplification. Important faradaic reactions, such as oxygen reduction and chloride oxidation, occur within or near the edges of the water window. Furthermore, the definition of the water window significantly depends on the electrolyte composition, with PBS yielding different results compared with culture media.
RESUMO
Objective.The wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has received less attention compared to traditional induction or ultrasound techniques. Our objective is to critically assess key parameters for directly powering neurostimulation electrodes with PVs, converting light impulses into neurostimulation currents.Approach.We systematically investigate varying PV cell size, optional series configurations, and coupling with microelectrodes fabricated from a range of materials such as Pt, TiN, IrOx, Ti, W, PtOx, Au, or poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate). Additionally, two types of PVs, ultrathin organic PVs and monocrystalline silicon PVs, are compared. These combinations are employed to drive pairs of electrodes with different sizes and impedances. The readout method involves measuring electrolytic current using a straightforward amplifier circuit.Main results.Optimal PV selection is crucial, necessitating sufficiently large PV cells to generate the desired photocurrent. Arranging PVs in series is essential to produce the appropriate voltage for driving current across electrode/electrolyte impedances. By carefully choosing the PV arrangement and electrode type, it becomes possible to emulate electrical stimulation protocols in terms of charge and frequency. An important consideration is whether the circuit is photovoltage-limited or photocurrent-limited. High charge-injection capacity electrodes made from pseudo-faradaic materials impose a photocurrent limit, while more capacitive materials like Pt are photovoltage-limited. Although organic PVs exhibit lower efficiency than silicon PVs, in many practical scenarios, stimulation current is primarily limited by the electrodes rather than the PV driver, leading to potential parity between the two types.Significance.This study provides a foundational guide for designing a PV-powered neurostimulation circuit. The insights gained are applicable to bothin vitroandin vivoapplications, offering a resource to the neural engineering community.
Assuntos
Eletrodos Implantados , Microeletrodos , Desenho de Equipamento/métodos , Neuroestimuladores Implantáveis , Estimulação Elétrica/métodos , Estimulação Elétrica/instrumentaçãoRESUMO
Organic electrochemical transistors (OECTs) have emerged as promising candidates for various fields, including bioelectronics, neuromorphic computing, biosensors, and wearable electronics. OECTs operate in aqueous solutions, exhibit high amplification properties, and offer ion-to-electron signal transduction. The OECT channel consists of a conducting polymer, with PEDOT:PSS receiving the most attention to date. While PEDOT:PSS is highly conductive, and benefits from optimized protocols using secondary dopants and detergents, new p-type and n-type polymers are emerging with desirable material properties. Among these, low-oxidation potential oligomers are highly enabling for bioelectronics applications, however the polymers resulting from their polymerization lag far behind in conductivity compared with the established PEDOT:PSS. In this work we show that by careful design of the OECT geometrical characteristics, we can overcome this limitation and achieve devices that are on-par with transistors employing PEDOT:PSS. We demonstrate that the vertical architecture allows for facile electropolymerization of a family of trimers that are polymerized in very low oxidation potentials, without the need for harsh chemicals or secondary dopants. Vertical and planar OECTs are compared using various characterization methods. We show that vOECTs are superior platforms in general and propose that the vertical architecture can be expanded for the realization of OECTs for various applications.
RESUMO
H2 O2 plays a significant role in a range of physiological processes where it performs vital tasks in redox signaling. The sensitivity of many biological pathways to H2 O2 opens up a unique direction in the development of bioelectronics devices to control levels of reactive-oxygen species (ROS). Here a microfabricated ROS modulation device that relies on controlled faradaic reactions is presented. A concentric pixel arrangement of a peroxide-evolving cathode surrounded by an anode ring which decomposes the peroxide, resulting in localized peroxide delivery is reported. The conducting polymer (poly(3,4-ethylenedioxythiophene) (PEDOT), is exploited as the cathode. PEDOT selectively catalyzes the oxygen reduction reaction resulting in the production of hydrogen peroxide (H2 O2 ). Using electrochemical and optical assays, combined with modeling, the performance of the devices is benchmarked. The concentric pixels generate tunable gradients of peroxide and oxygen concentrations. The faradaic devices are prototyped by modulating human H2 O2 -sensitive Kv7.2/7.3 (M-type) channels expressed in a single-cell model (Xenopus laevis oocytes). The Kv7 ion channel family is responsible for regulating neuronal excitability in the heart, brain, and smooth muscles, making it an ideal platform for faradaic ROS stimulation. The results demonstrate the potential of PEDOT to act as an H2 O2 delivery system, paving the way to ROS-based organic bioelectronics.
Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Peróxido de Hidrogênio/metabolismo , Polímeros/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Modelos Animais , Oócitos/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Xenopus laevisRESUMO
Objective. Electric stimulation delivered by implantable electrodes is a key component of neural engineering. While factors affecting long-term stability, safety, and biocompatibility are a topic of continuous investigation, a widely-accepted principle is that charge injection should be reversible, with no net electrochemical products forming. We want to evaluate oxygen reduction reactions (ORR) occurring at different electrode materials when using established materials and stimulation protocols.Approach. As stimulation electrodes, we have tested platinum, gold, tungsten, nichrome, iridium oxide, titanium, titanium nitride, and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate). We use cyclic voltammetry and voltage-step amperometry in oxygenated versus inert conditions to establish at which potentials ORR occurs, and the magnitudes of diffusion-limited ORR currents. We also benchmark the areal capacitance of each electrode material. We use amperometric probes (Clark-type electrodes) to quantify the O2and H2O2concentrations in the vicinity of the electrode surface. O2and H2O2concentrations are measured while applying DC current, or various biphasic charge-balanced pulses of amplitude in the range 10-30µC cm-2/phase. To corroborate experimental measurements, we employ finite element modelling to recreate 3D gradients of O2and H2O2.Main results. All electrode materials support ORR and can create hypoxic conditions near the electrode surface. We find that electrode materials differ significantly in their onset potentials for ORR, and in the extent to which they produce H2O2as a by-product. A key result is that typical charge-balanced biphasic pulse protocols do lead to irreversible ORR. Some electrodes induce severely hypoxic conditions, others additionally produce an accumulation of hydrogen peroxide into the mM range.Significance. Our findings highlight faradaic ORR as a critical consideration for neural interface devices and show that the established biphasic/charge-balanced approach does not prevent irreversible changes in O2concentrations. Hypoxia and H2O2can result in different (electro)physiological consequences.
Assuntos
Peróxido de Hidrogênio , Platina , Estimulação Elétrica/métodos , Eletrodos , Eletrodos Implantados , Humanos , Hipóxia , OxigênioRESUMO
Objective.Vagus nerve stimulation (VNS) is a promising approach for the treatment of a wide variety of debilitating conditions, including autoimmune diseases and intractable epilepsy. Much remains to be learned about the molecular mechanisms involved in vagus nerve regulation of organ function. Despite an abundance of well-characterized rodent models of common chronic diseases, currently available technologies are rarely suitable for the required long-term experiments in freely moving animals, particularly experimental mice. Due to challenging anatomical limitations, many relevant experiments require miniaturized, less invasive, and wireless devices for precise stimulation of the vagus nerve and other peripheral nerves of interest. Our objective is to outline possible solutions to this problem by using nongenetic light-based stimulation.Approach.We describe how to design and benchmark new microstimulation devices that are based on transcutaneous photovoltaic stimulation. The approach is to use wired multielectrode cuffs to test different stimulation patterns, and then build photovoltaic stimulators to generate the most optimal patterns. We validate stimulation through heart rate analysis.Main results.A range of different stimulation geometries are explored with large differences in performance. Two types of photovoltaic devices are fabricated to deliver stimulation: photocapacitors and photovoltaic flags. The former is simple and more compact, but has limited efficiency. The photovoltaic flag approach is more elaborate, but highly efficient. Both can be used for wireless actuation of the vagus nerve using light impulses.Significance.These approaches can enable studies in small animals that were previously challenging, such as long-termin vivostudies for mapping functional vagus nerve innervation. This new knowledge may have potential to support clinical translation of VNS for treatment of select inflammatory and neurologic diseases.
Assuntos
Estimulação do Nervo Vago , Tecnologia sem Fio , Animais , Camundongos , Estimulação do Nervo Vago/instrumentaçãoRESUMO
Electrical stimulation of peripheral nerves is a cornerstone of bioelectronic medicine. Effective ways to accomplish peripheral nerve stimulation (PNS) noninvasively without surgically implanted devices are enabling for fundamental research and clinical translation. Here, it is demonstrated how relatively high-frequency sine-wave carriers (3 kHz) emitted by two pairs of cutaneous electrodes can temporally interfere at deep peripheral nerve targets. The effective stimulation frequency is equal to the offset frequency (0.5 - 4 Hz) between the two carriers. This principle of temporal interference nerve stimulation (TINS) in vivo using the murine sciatic nerve model is validated. Effective actuation is delivered at significantly lower current amplitudes than standard transcutaneous electrical stimulation. Further, how flexible and conformable on-skin multielectrode arrays can facilitate precise alignment of TINS onto a nerve is demonstrated. This method is simple, relying on the repurposing of existing clinically-approved hardware. TINS opens the possibility of precise noninvasive stimulation with depth and efficiency previously impossible with transcutaneous techniques.
Assuntos
Estimulação Elétrica Nervosa Transcutânea , Animais , Estimulação Elétrica , Camundongos , Nervo Isquiático/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodosRESUMO
Implantable devices for the wireless modulation of neural tissue need to be designed for reliability, safety and reduced invasiveness. Here we report chronic electrical stimulation of the sciatic nerve in rats by an implanted organic electrolytic photocapacitor that transduces deep-red light into electrical signals. The photocapacitor relies on commercially available semiconducting non-toxic pigments and is integrated in a conformable 0.1-mm3 thin-film cuff. In freely moving rats, fixation of the cuff around the sciatic nerve, 10 mm below the surface of the skin, allowed stimulation (via 50-1,000-µs pulses of deep-red light at wavelengths of 638 nm or 660 nm) of the nerve for over 100 days. The robustness, biocompatibility, low volume and high-performance characteristics of organic electrolytic photocapacitors may facilitate the wireless chronic stimulation of peripheral nerves.
Assuntos
Próteses e Implantes , Nervo Isquiático , Animais , Estimulação Elétrica , Ratos , Reprodutibilidade dos Testes , Nervo Isquiático/fisiologiaRESUMO
Nongenetic optical control of neurons is a powerful technique to study and manipulate the function of the nervous system. This research has benchmarked the performance of organic electrolytic photocapacitor (OEPC) optoelectronic stimulators at the level of single mammalian cells: human embryonic kidney (HEK) cells with heterologously expressed voltage-gated K+ channels and hippocampal primary neurons. OEPCs act as extracellular stimulation electrodes driven by deep red light. The electrophysiological recordings show that millisecond light stimulation of OEPC shifts conductance-voltage plots of voltage-gated K+ channels by ≈30 mV. Models are described both for understanding the experimental findings at the level of K+ channel kinetics in HEK cells, as well as elucidating interpretation of membrane electrophysiology obtained during stimulation with an electrically floating extracellular photoelectrode. A time-dependent increase in voltage-gated channel conductivity in response to OEPC stimulation is demonstrated. These findings are then carried on to cultured primary hippocampal neurons. It is found that millisecond time-scale optical stimuli trigger repetitive action potentials in these neurons. The findings demonstrate that OEPC devices enable the manipulation of neuronal signaling activities with millisecond precision. OEPCs can therefore be integrated into novel in vitro electrophysiology protocols, and the findings can inspire in vivo applications.
RESUMO
Objective.For decades electrical stimulation has been used in neuroscience to investigate brain networks and been deployed clinically as a mode of therapy. Classically, all methods of electrical stimulation require implanted electrodes to be connected in some manner to an apparatus which provides power for the stimulation itself.Approach. We show the use of novel organic electronic devices, specifically organic electrolytic photocapacitors (OEPCs), which can be activated when illuminated with deep-red wavelengths of light and correspondingly do not require connections with external wires or power supplies when implanted at various depthsin vivo. Main results. We stimulated cortical brain tissue of mice with devices implanted subcutaneously, as well as beneath both the skin and skull to demonstrate a wireless stimulation of the whisker motor cortex. Devices induced both a behavior response (whisker movement) and a sensory response in the corresponding sensory cortex. Additionally, we showed that coating OEPCs with a thin layer of a conducting polymer formulation (PEDOT:PSS) significantly increases their charge storage capacity, and can be used to further optimize the applied photoelectrical stimulation.Significance. Overall, this new technology can provide an on-demand electrical stimulation by simply using an OEPC and a deep-red wavelength illumination. Wires and interconnects to provide power to implanted neurostimulation electrodes are often problematic in freely-moving animal research and with implanted electrodes for long-term therapy in patients. Our wireless brain stimulation opens new perspectives for wireless electrical stimulation for applications in fundamental neurostimulation and in chronic therapy.