Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Microbiol ; 13(2): 316-29, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20946243

RESUMO

Staphylococcus aureus is able to invade non-professional phagocytes by interaction of staphylococcal adhesins with extracellular proteins of mammalian cells and eventually resides in acidified phago-endosomes. Some staphylococcal strains have been shown to subsequently escape from this compartment. A functional agr quorum-sensing system is needed for phagosomal escape. However, the nature of this agr dependency as well as the toxins involved in disruption of the phagosomal membrane are unknown. Using a novel technique to detect vesicular escape of S. aureus, we identified staphylococcal virulence factors involved in phagosomal escape. Here we show that a synergistic activity of the cytolytic peptide, staphylococcal δ-toxin and the sphingomyelinase ß-toxin enable the phagosomal escape of staphylococci in human epithelial as well as in endothelial cells. The agr dependency of this process can be directly explained by the location of the structural gene for δ-toxin within the agr effector RNAIII.


Assuntos
Toxinas Bacterianas/metabolismo , Endossomos/microbiologia , Células Endoteliais/microbiologia , Células Epiteliais/microbiologia , Proteínas Hemolisinas/metabolismo , Fagossomos/microbiologia , Esfingomielina Fosfodiesterase/metabolismo , Staphylococcus aureus/patogenicidade , Proteínas de Bactérias/metabolismo , Linhagem Celular , Humanos , Transativadores/metabolismo , Fatores de Virulência/metabolismo
2.
Cell Rep ; 20(10): 2384-2395, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877472

RESUMO

Activation of transcription factor NF-κB is a hallmark of infection with the gastric pathogen Helicobacter pylori, associated with inflammation and carcinogenesis. Genome-wide RNAi screening revealed numerous host factors involved in H. pylori-, but not IL-1ß- and TNF-α-dependent NF-κB regulation. Pathway analysis including CRISPR/Cas9-knockout and recombinant protein technology, immunofluorescence microscopy, immunoblotting, mass spectrometry, and mutant H. pylori strains identified the H. pylori metabolite D-glycero-ß-D-manno-heptose 1,7-bisphosphate (ßHBP) as a cagPAI type IV secretion system (T4SS)-dependent effector of NF-κB activation in infected cells. Upon pathogen-host cell contact, TIFA forms large complexes (TIFAsomes) including interacting host factors, such as TRAF2. NF-κB activation, TIFA phosphorylation, and TIFAsome formation depend on a functional ALPK1 kinase, highlighting the ALPK1-TIFA axis as a core innate immune pathway. ALPK1-TIFA-mediated NF-κB activation was independent of CagA protein translocation, indicating that CagA translocation and HBP delivery to host cells are distinct features of the pathogen's T4SS.


Assuntos
Transdução de Sinais/fisiologia , Sistemas de Secreção Tipo IV/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Humanos , Imunidade Inata/genética , Imunidade Inata/fisiologia , Microscopia de Fluorescência , NF-kappa B/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo , Sistemas de Secreção Tipo IV/genética
3.
Cell Rep ; 11(11): 1703-13, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26074077

RESUMO

Infection with the human pathogen Helicobacter pylori (H. pylori) is a major risk factor for gastric cancer. Since the bacterium exerts multiple genotoxic effects, we examined the circumstances of DNA damage accumulation and identified regions within the host genome with high susceptibility to H. pylori-induced damage. Infection impaired several DNA repair factors, the extent of which depends on a functional cagPAI. This leads to accumulation of a unique DNA damage pattern, preferentially in transcribed regions and proximal to telomeres, in both gastric cell lines and primary gastric epithelial cells. The observed pattern correlates with focal amplifications in adenocarcinomas of the stomach and partly overlaps with known cancer genes. We thus demonstrate an impact of a bacterial infection directed toward specific host genomic regions and describe underlying characteristics that make such regions more likely to acquire heritable changes during infection, which could contribute to cellular transformation.


Assuntos
Dano ao DNA , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/genética , Mucosa Gástrica/microbiologia , Amplificação de Genes , Genoma Humano , Infecções por Helicobacter/patologia , Humanos , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Telômero/genética
4.
Front Microbiol ; 5: 356, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101063

RESUMO

Helicobacter pylori is a Gram-negative bacterial pathogen colonizing the human stomach. Infection with H. pylori causes chronic inflammation of the gastric mucosa and may lead to peptic ulceration and/or gastric cancer. A major virulence determinant of H. pylori is the type IV secretion system (T4SS), which is used to inject the virulence factor CagA into the host cell, triggering a wide range of cellular signaling events. Here, we used a phosphoproteomic approach to investigate tyrosine signaling in response to host-pathogen interaction, using stable isotope labeling in cell culture (SILAC) of AGS cells to obtain a differential picture between multiple infection conditions. Cells were infected with wild type H. pylori P12, a P12Δ CagA deletion mutant, and a P12Δ PAI deletion mutant to compare signaling changes over time and in the absence of CagA or the T4SS. Tryptic peptides were enriched for tyrosine (Tyr) phosphopeptides and analyzed by nano-LC-Orbitrap MS. In total, 85 different phosphosites were found to be regulated following infection. The majority of phosphosites identified were kinases of the MAPK family. CagA and the T4SS were found to be key regulators of Tyr phosphosites. Our findings indicate that CagA primarily induces activation of ERK1 and integrin-linked factors, whereas the T4SS primarily modulates JNK and p38 activation.

5.
Vet Microbiol ; 143(1): 14-20, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20233642

RESUMO

Infection of target cells by alphaherpesviruses leads to extensive modulation of host cell gene expression. To gain detailed information on the molecular pathways affected by infection of Madin-Darby bovine kidney (MDBK) cells with PrV, transcript analysis was combined with a stable isotope-based quantitative proteomic approach (SILAC). Four hours after infection cells were harvested and processed in parallel either for transcript analysis, for subcellular fractionation into nuclei and cytosol, for extraction of phosphoproteins, or for affinity extraction with Heparin Sepharose and Cibacron Blue F3G-A-Sepharose. All fractions were further analysed by large format two-dimensional gel electrophoresis in different pH-ranges to maximize the number of proteins to be identified and quantified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Cell fractionation was quick and easy to perform but in comparison to affinity fractionation yielded lower numbers of identified and quantified proteins. After infection with PrV, only two of the 55 proteins with significantly modulated protein levels showed significant changes in transcript levels, indicating that posttranslational modifications may play a major role in the cellular response to PrV infection. Application of isotope labelling to cell cultures infected with wild-type PrV-Ka and a US3 protein kinase negative mutant allowed to monitor pUS3-dependent changes in the expression levels of viral proteins pUL29, pUL39 and pUL42.


Assuntos
Perfilação da Expressão Gênica , Herpesvirus Suídeo 1/fisiologia , Proteoma/análise , Proteômica/métodos , Pseudorraiva/metabolismo , Animais , Bovinos , Fracionamento Celular , Linhagem Celular , Eletroforese em Gel Bidimensional , Marcação por Isótopo , Análise em Microsséries , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa