Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Anal Biochem ; 676: 115246, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451419

RESUMO

Incubation of reduced nicotinamide adenine dinucleotide (NADH) but not oxidized NAD+ with ortho-aminobenzaldehyde (oABA) generated an uncharacterized chromophore with an absorption peak characteristic of a dihydroquinazoline condensate. This chromophore is responsible for a non-specific signal in a diamine oxidase (DAO) activity assay based on the generation of fluorescent dihydroquinazoline structures directly from DAO substrates. Herein we show that at pH values below 3.0 the glycosidic bond of NADH/NADPH is broken releasing double protonated dihydro-nicotinamide (dihydro-NAM), which consequently condensates with oABA to a novel dihydroquinazoline chromophore and fluorophore, namely the 6- or 8-carbamoyl-5H,7H,8H,9H-10λ5-pyrido[2,1-b]quinazolin-10-ylium isomer (CMPQ). The second protonation event closely correlates with the pKa of the N1 nitrogen of C5-protonated dihydro-NAM and fluorophore stability. The fusion partner of oABA is likely the iminium of the primary acid product of dihydro-NAM after glycosidic bond hydrolysis and before irreversible cyclization. Trapping of protonated dihydro-NAM from NADH or NADPH with oABA allows quantification of these dinucleotides. Despite almost a century of research studying acid-catalyzed molecular rearrangements of NADH and NADPH, new and surprising details can be discovered.


Assuntos
NAD , Niacinamida , NAD/metabolismo , NADP/metabolismo , Corantes , NADH NADPH Oxirredutases , Oxirredução
2.
Inflamm Res ; 72(10-11): 2013-2022, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812220

RESUMO

OBJECTIVE: To test whether recombinant human diamine oxidase (rhDAO) with a mutated heparin-binding motif (mHBM), which shows an increased alpha-distribution half-life, prevents histamine-induced hemodynamic effects. MATERIAL: Thirty-eight female guinea pigs were either pretreated with rhDOA_mHBM or buffer. TREATMENT AND METHODS: Guinea pigs received a continuous infusion of histamine. Heart rate (HR), body core temperature and mean arterial pressure (MAP) were measured and blood was collected. RESULTS: Continuous intravenous infusion of 8 µg/kg/min histamine increased mean peak plasma histamine levels from 5 (± 0.3 SEM) to 28 ng/mL (± 4.9 SEM) after 30 min but had no effect on oxygen saturation. Guinea pigs pretreated with 4 mg/kg rhDAO_mHBM showed lower mean HR (p = 0.008), histamine plasma concentrations (p = 0.002), and higher body core temperatures at the end of the histamine challenge (p = 0.02) compared to controls. Cessation of histamine infusion led to a rebound increase in MAP, but this hemodynamic instability was prevented by rhDAO_mHBM. Pretreatment with 4 mg/kg rhDAO_mHBM reduced urinary histamine (p = 0.004) and 1-Methylhistamine (p < 0.0001) concentrations compared to controls. CONCLUSIONS: Prophylactic infusion of rhDAO_mHBM prevents hemodynamic effects in a guinea pig model of continuous histamine infusion. These findings might help in the translation from animals to humans and in the selection of the optimal dosing of rhDAO_mHBM during human histamine challenge studies.


Assuntos
Amina Oxidase (contendo Cobre) , Histamina , Humanos , Cobaias , Feminino , Animais , Hemodinâmica
3.
Glycobiology ; 32(5): 404-413, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35088086

RESUMO

Elevated plasma and tissues histamine concentrations can cause severe symptoms in mast cell activation syndrome, mastocytosis or anaphylaxis. Endogenous and recombinant human diamine oxidase (rhDAO) can rapidly and completely degrade histamine, and administration of rhDAO represents a promising new treatment approach for diseases with excess histamine release from activated mast cells. We recently generated heparin-binding motif mutants of rhDAO with considerably increased in vivo half-lives in rodents compared with the rapidly cleared wildtype protein. Herein, we characterize the role of an evolutionary recently added glycosylation site asparagine 168 in the in vivo clearance and the influence of an unusually solvent accessible free cysteine 123 on the oligomerization of diamine oxidase (DAO). Mutation of the unpaired cysteine 123 strongly reduced oligomerization without influence on enzymatic DAO activity and in vivo clearance. Recombinant hDAO produced in ExpiCHO-S™ cells showed a 15-fold reduction in the percentage of glycans with terminal sialic acid at Asn168 compared with Chinese hamster ovary (CHO)-K1 cells. Capping with sialic acid was also strongly reduced at the other glycosylation sites. The high abundance of terminal mannose and N-acetylglucosamine residues in the four glycans expressed in ExpiCHO-S™ cells compared with CHO-K1 cells resulted in rapid in vivo clearance. Mutation of Asn168 or sialidase treatment also significantly increased clearance. Intact N-glycans at Asn168 seem to protect DAO from rapid clearance in rodents. Full processing of all glycoforms is critical for preserving the improved in vivo half-life characteristics of the rhDAO heparin-binding motif mutants.


Assuntos
Amina Oxidase (contendo Cobre) , Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Cisteína , Glicosilação , Heparina , Histamina/metabolismo , Humanos , Ácido N-Acetilneuramínico , Polissacarídeos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
J Pharmacol Exp Ther ; 382(2): 113-122, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688477

RESUMO

Nafamostat is an approved short-acting serine protease inhibitor. However, its administration is also associated with anaphylactic reactions. One mechanism to augment hypersensitivity reactions could be inhibition of diamine oxidase (DAO). The chemical structure of nafamostat is related to the potent DAO inhibitors pentamidine and diminazene. Therefore, we tested whether nafamostat is a human DAO inhibitor. Using different activity assays, nafamostat reversibly inhibited recombinant human DAO with an IC50 of 300-400 nM using 200 µM substrate concentrations. The Ki of nafamostat for the inhibition of putrescine and histamine deamination is 27 nM and 138 nM, respectively For both substrates, nafamostat is a mixed mode inhibitor with P values of <0.01 compared with other inhibition types. Using 80-90% EDTA plasma, the IC50 of nafamostat inhibition was approximately 360 nM using 20 µM cadaverine. In 90% EDTA plasma, the IC50 concentrations were 2-3 µM using 0.9 µM and 0.18 µM histamine as substrate. In silico modeling showed a high overlap compared with published diminazene crystallography data, with a preferred orientation of the guanidine group toward topaquinone. In conclusion, nafamostat is a potent human DAO inhibitor and might increase severity of anaphylactic reaction by interfering with DAO-mediated extracellular histamine degradation. SIGNIFICANCE STATEMENT: Treatment with the short-acting anticoagulant nafamostat during hemodialysis, leukocytapheresis, extracorporeal membrane oxygenator procedures, and disseminated intravascular coagulation is associated with severe anaphylaxis in humans. Histamine is a central mediator in anaphylaxis. Potent inhibition of the only extracellularly histamine-degrading enzyme diamine oxidase could augment anaphylaxis reactions during nafamostat treatment.


Assuntos
Amina Oxidase (contendo Cobre) , Anafilaxia , Amina Oxidase (contendo Cobre)/metabolismo , Benzamidinas , Diminazena , Ácido Edético , Guanidinas/efeitos adversos , Histamina/efeitos adversos , Histamina/metabolismo , Humanos
5.
Inflamm Res ; 71(4): 497-511, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35303133

RESUMO

OBJECTIVE: To evaluate the contribution of endogenous diamine oxidase (DAO) in the inactivation of exogenous histamine, to find a mouse strain with increased histamine sensitivity and to test the efficacy of rhDAO in a histamine challenge model. METHODS: Diamine oxidase knockout (KO) mice were challenged with orally and subcutaneously administered histamine in combination with the ß-adrenergic blocker propranolol, with the two histamine-N-methyltransferase (HNMT) inhibitors metoprine and tacrine, with folic acid to mimic acute kidney injury and treated with recombinant human DAO. Core body temperature was measured using a subcutaneously implanted microchip and histamine plasma levels were quantified using a homogeneous time resolved fluorescence assay. RESULTS: Core body temperature and plasma histamine levels were not significantly different between wild type (WT) and DAO KO mice after oral and subcutaneous histamine challenge with and without acute kidney injury or administration of HNMT inhibitors. Treatment with recombinant human DAO reduced the mean area under the curve (AUC) for core body temperature loss by 63% (p = 0.002) and the clinical score by 88% (p < 0.001). The AUC of the histamine concentration was reduced by 81%. CONCLUSIONS: Inactivation of exogenous histamine is not driven by enzymatic degradation and kidney filtration. Treatment with recombinant human DAO strongly reduced histamine-induced core body temperature loss, histamine concentrations and prevented the development of severe clinical symptoms.


Assuntos
Amina Oxidase (contendo Cobre) , Histamina , Injúria Renal Aguda/induzido quimicamente , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Histamina/administração & dosagem , Histamina/metabolismo , Histamina N-Metiltransferase/metabolismo , Camundongos , Camundongos Knockout
6.
Glycobiology ; 31(4): 444-458, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-32985651

RESUMO

Human diamine oxidase (hDAO) rapidly inactivates histamine by deamination. No pharmacokinetic data are available to better understand its potential as a new therapeutic modality for diseases with excess local and systemic histamine, like anaphylaxis, urticaria or mastocytosis. After intravenous administration of recombinant hDAO to rats and mice, more than 90% of the dose disappeared from the plasma pool within 10 min. Human DAO did not only bind to various endothelial and epithelial cell lines in vitro, but was also unexpectedly internalized and visible in granule-like structures. The uptake of rhDAO into cells was dependent on neither the asialoglycoprotein-receptor (ASGP-R) nor the mannose receptor (MR) recognizing terminal galactose or mannose residues, respectively. Competition experiments with ASGP-R and MR ligands did not block internalization in vitro or rapid clearance in vivo. The lack of involvement of N-glycans was confirmed by testing various glycosylation mutants. High but not low molecular weight heparin strongly reduced the internalization of rhDAO in HepG2 cells and HUVECs. Human DAO was readily internalized by CHO-K1 cells, but not by the glycosaminoglycan- and heparan sulfate-deficient CHO cell lines pgsA-745 and pgsD-677, respectively. A docked heparin hexasaccharide interacted well with the predicted heparin binding site 568RFKRKLPK575. These results strongly imply that rhDAO clearance in vivo and cellular uptake in vitro is independent of N-glycan interactions with the classical clearance receptors ASGP-R and MR, but is mediated by binding to heparan sulfate proteoglycans followed by internalization via an unknown receptor.


Assuntos
Amina Oxidase (contendo Cobre) , Proteoglicanas de Heparan Sulfato , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Células CHO , Cricetinae , Glicosaminoglicanos , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Ratos
7.
Inflamm Res ; 69(9): 937-950, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32488317

RESUMO

OBJECTIVE: To measure diamine oxidase (DAO) activity with high sensitivity in complex matrices like plasma or tissue extracts radioactive putrescine or horseradish peroxidase (HRP)/hydrogen peroxide (H2O2) coupling must be used. The use of radioactive material should be avoided and HRP/H2O2 coupling is compromised by antioxidants. METHODS AND RESULTS: Condensation of ortho-aminobenzaldehyde (oABA) with delta-1-pyrroline and delta-1-piperideine, the autocyclization products of the DAO-oxidized natural substrates putrescine and cadaverine, generates new quinazoline fluorophores with absorption and excitation maxima of 430 and 460 nm, respectively, and peak emission at 620 nm. Fluorescent-based detection limits are 20-40 times lower compared to absorption measurements. This assay can be used to measure DAO activity in human plasma after spiking recombinant human (rh)DAO, in rat plasma after intravenous rhDAO administration, in pregnancy plasma and in tissue extracts of DAO wild-type and knock-out mice. Using rat plasma the correlation between rhDAO activity and ELISA data is 99%. Human and rat plasma without DAO spiking and tissue extracts from DAO knock-out mice showed stable and low fluorescence in the presence of high substrate concentrations. CONCLUSIONS: Incubation of DAO with the natural substrates putrescine and cadaverine and oABA generates novel fluorophores increasing the detection limit compared to absorption measurements at least tenfold. This simple, sensitive and specific assay allows the non-radioactive quantification of DAO activity in complex matrices like plasma and tissue extracts without interference by antioxidants.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Corantes Fluorescentes , Animais , Cadaverina/metabolismo , Humanos , Camundongos , Putrescina/metabolismo , Ratos
8.
J Biol Chem ; 293(3): 1070-1087, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29187599

RESUMO

N-Glycosylation plays a fundamental role in many biological processes. Human diamine oxidase (hDAO), required for histamine catabolism, has multiple N-glycosylation sites, but their roles, for example in DAO secretion, are unclear. We recently reported that the N-glycosylation sites Asn-168, Asn-538, and Asn-745 in recombinant hDAO (rhDAO) carry complex-type glycans, whereas Asn-110 carries only mammalian-atypical oligomannosidic glycans. Here, we show that Asn-110 in native hDAO from amniotic fluid and Caco-2 cells, DAO from porcine kidneys, and rhDAO produced in two different HEK293 cell lines is also consistently occupied by oligomannosidic glycans. Glycans at Asn-168 were predominantly sialylated with bi- to tetra-antennary branches, and Asn-538 and Asn-745 had similar complex-type glycans with some tissue- and cell line-specific variations. The related copper-containing amine oxidase human vascular adhesion protein-1 also exclusively displayed high-mannose glycosylation at Asn-137. X-ray structures revealed that the residues adjacent to Asn-110 and Asn-137 form a highly conserved hydrophobic cleft interacting with the core trisaccharide. Asn-110 replacement with Gln completely abrogated rhDAO secretion and caused retention in the endoplasmic reticulum. Mutations of Asn-168, Asn-538, and Asn-745 reduced rhDAO secretion by 13, 71, and 32%, respectively. Asn-538/745 double and Asn-168/538/745 triple substitutions reduced rhDAO secretion by 85 and 94%. Because of their locations in the DAO structure, Asn-538 and Asn-745 glycosylations might be important for efficient DAO dimer formation. These functional results are reflected in the high evolutionary conservation of all four glycosylation sites. Human DAO is abundant only in the gastrointestinal tract, kidney, and placenta, and glycosylation seems essential for reaching high enzyme expression levels in these tissues.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Células CACO-2 , Cristalografia por Raios X , Glicosilação , Células HEK293 , Humanos , Dobramento de Proteína
9.
Biotechnol Bioeng ; 114(11): 2616-2627, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28734047

RESUMO

Site-specific recombinase mediated cassette exchange (RMCE) enables the transfer of the gene of interest (GOI) into pre-selected genomic locations with defined expression properties. For the generation of recombinant production cell lines, this has the advantage that screening for high transcription rates at the genome integration site would be required only once, with the possibility to reuse the selected site for new products. Here, we describe a strategy that aims at the selection of transcriptionally active genome integration sites in Chinese Hamster Ovary (CHO) cells by using alternate start codons in the surface reporter protein CD4, in combination with FACS sorting for high expressers. The alternate start codon reduces the translation initiation efficiency and allows sorting for CHO cells with the highest transcription rates, while RMCE enables the subsequent exchange of the CD4 against the GOI. We have shown that sorted cell pools with the CD4 reporter gene containing the alternate start codon CTG lead to higher GFP signals and higher antibody titers upon RMCE as compared to cell pools containing the ATG start codon of the CD4 reporter. Despite the absence of any subcloning step, the final cell pool contained the CD4 gene in a single genome integration site.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Códon de Iniciação/genética , DNA Nucleotidiltransferases/genética , Técnicas de Transferência de Genes , Proteínas Recombinantes/genética , Ativação Transcricional/genética , Animais , Células CHO , Cricetinae , Cricetulus , Marcação de Genes/métodos , Engenharia de Proteínas/métodos , Transgenes/genética
10.
Appl Microbiol Biotechnol ; 98(13): 5959-65, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24557570

RESUMO

The efficient production of recombinant proteins such as antibodies typically involves the screening of an extravagant number of clones in order to finally select a stable and high-producing cell line. Thereby, the underlying principles of a powerful protein machinery, but also potential expression limitations, often remain poorly understood. To shed more light on this topic, we applied several different techniques to investigate a previously generated cell line (4B3-IgA), which expressed recombinant immunoglobulin A (IgA) with an unusually low specific productivity. Results were compared to the host cell line and to another recombinant CHO cell line (3D6-IgA) expressing another IgA that binds to an overlapping epitope. The low specific productivity of clone 4B3-IgA could not be explained by GCN or mRNA levels, but insufficiencies in protein maturation and/or secretion were determined. Despite the presence of free light chain polypeptides, they occasionally failed to associate with their heavy chain partners. Consequently, heavy chains were misassembled and accumulated to form intracellular aggregates, so-called Russell bodies. These protein deposits evoked the expression of increased amounts of ER-resident chaperones to combat the induced stress. Despite bottlenecks in protein processing, the cells' quality checkpoints remained intact, and predominantly correctly processed IgA was exported into the culture medium. The results of our study demonstrated that recombinant protein expression was impaired by heavy chain aggregation despite the presence of a disposable light chain and revealed elevated chaperone formation in combination with limited antibody assembly. Our studies suggest that the primary amino acid sequence and consequently the resulting structure of an expressed protein need to be considered as a factor influencing a cell's productivity.


Assuntos
Anticorpos/genética , Anticorpos/metabolismo , Expressão Gênica , Animais , Células CHO , Cricetulus , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica
11.
Elife ; 102021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477104

RESUMO

Background: Excessive plasma histamine concentrations cause symptoms in mast cell activation syndrome, mastocytosis, or anaphylaxis. Anti-histamines are often insufficiently efficacious. Human diamine oxidase (hDAO) can rapidly degrade histamine and therefore represents a promising new treatment strategy for conditions with pathological histamine concentrations. Methods: Positively charged amino acids of the heparin-binding motif of hDAO were replaced with polar serine or threonine residues. Binding to heparin and heparan sulfate, cellular internalization and clearance in rodents were examined. Results: Recombinant hDAO is rapidly cleared from the circulation in rats and mice. After mutation of the heparin-binding motif, binding to heparin and heparan sulfate was strongly reduced. The double mutant rhDAO-R568S/R571T showed minimal cellular uptake. The short α-distribution half-life of the wildtype protein was eliminated, and the clearance was significantly reduced in rodents. Conclusions: The successful decrease in plasma clearance of rhDAO by mutations of the heparin-binding motif with unchanged histamine-degrading activity represents the first step towards the development of rhDAO as a first-in-class biopharmaceutical to effectively treat diseases characterized by excessive histamine concentrations in plasma and tissues. Funding: Austrian Science Fund (FWF) Hertha Firnberg program grant T1135 (EG); Sigrid Juselius Foundation, Medicinska Understödsförening Liv och Hälsa rft (TAS and SeV).


Assuntos
Amina Oxidase (contendo Cobre) , Motivos de Aminoácidos/genética , Produtos Biológicos , Heparina/metabolismo , Antagonistas dos Receptores Histamínicos , Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Antagonistas dos Receptores Histamínicos/química , Antagonistas dos Receptores Histamínicos/metabolismo , Humanos , Camundongos , Mutação/genética , Ligação Proteica/genética , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
EBioMedicine ; 67: 103348, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33906067

RESUMO

BACKGROUND: Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection or vaccination. While first-generation antibody tests have primarily provided qualitative results, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups. METHODS: We have developed two quantitative, easy-to-implement SARS-CoV-2 antibody tests, based on the spike receptor binding domain and the nucleocapsid protein. Comprehensive evaluation of antigens from several biotechnological platforms enabled the identification of superior antigen designs for reliable serodiagnostic. Cut-off modelling based on unprecedented large and heterogeneous multicentric validation cohorts allowed us to define optimal thresholds for the tests' broad applications in different aspects of clinical use, such as seroprevalence studies and convalescent plasma donor qualification. FINDINGS: Both developed serotests individually performed similarly-well as fully-automated CE-marked test systems. Our described sensitivity-improved orthogonal test approach assures highest specificity (99.8%); thereby enabling robust serodiagnosis in low-prevalence settings with simple test formats. The inclusion of a calibrator permits accurate quantitative monitoring of antibody concentrations in samples collected at different time points during the acute and convalescent phase of COVID-19 and disclosed antibody level thresholds that correlate well with robust neutralization of authentic SARS-CoV-2 virus. INTERPRETATION: We demonstrate that antigen source and purity strongly impact serotest performance. Comprehensive biotechnology-assisted selection of antigens and in-depth characterisation of the assays allowed us to overcome limitations of simple ELISA-based antibody test formats based on chromometric reporters, to yield comparable assay performance as fully-automated platforms. FUNDING: WWTF, Project No. COV20-016; BOKU, LBI/LBG.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sítios de Ligação , Células CHO , COVID-19/imunologia , Cricetulus , Diagnóstico Precoce , Células HEK293 , Humanos , Imunoglobulina G/sangue , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
13.
Sci Rep ; 9(1): 8689, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213643

RESUMO

High-throughput siRNA screens were only recently applied to cell factories to identify novel engineering targets which are able to boost cells towards desired phenotypes. While siRNA libraries exist for model organisms such as mice, no CHO-specific library is publicly available, hindering the application of this technique to CHO cells. The optimization of these cells is of special interest, as they are the main host for the production of therapeutic proteins. Here, we performed a cross-species approach by applying a mouse whole-genome siRNA library to CHO cells, optimized the protocol for suspension cultured cells, as this is the industrial practice for CHO cells, and developed an in silico method to identify functioning siRNAs, which also revealed the limitations of using cross-species libraries. With this method, we were able to identify several genes that, upon knockdown, enhanced the total productivity in the primary screen. A second screen validated two of these genes, Rad21 and Chd4, whose knockdown was tested in additional CHO cell lines, confirming the induced high productivity phenotype, but also demonstrating the cell line/clone specificity of engineering effects.


Assuntos
Biblioteca Gênica , Genoma/genética , Ensaios de Triagem em Larga Escala/métodos , RNA Interferente Pequeno/genética , Animais , Células CHO , Técnicas de Cultura de Células/métodos , Proteínas de Ciclo Celular/genética , Cricetinae , Cricetulus , DNA Helicases/genética , Perfilação da Expressão Gênica/métodos , Humanos , Interferência de RNA
14.
Biotechnol J ; 13(4): e1700492, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29369524

RESUMO

Accurate measurement of global and specific protein synthesis rates is becoming increasingly important, especially in the context of biotechnological applications such as process modeling or selection of production cell clones. While quantification of total protein translation across whole cell populations is easily achieved, methods that are capable of tracking population dynamics at the single-cell level are still lacking. To address this need, we apply O-propargyl-puromycin (OPP) labeling to assess total protein synthesis in single recombinant Chinese hamster ovary (CHO) cells by flow cytometry. Thereby we demonstrate that global protein translation rates slightly increase with progression through the cell cycle during exponential growth. Stable CHO cell lines producing recombinant protein display similar levels of total protein synthesis as their parental CHO host cell line. Global protein translation does not correlate with intracellular product content of three model proteins, but the host cell line with high transient productivity has a higher OPP signal. This indicates that production cell lines with increased overall protein synthesis capacity can be identified by our method at the single-cell level. In conclusion, OPP-labeling allows rapid and reproducible assessment of global protein synthesis in single CHO cells, and can be multiplexed with DNA staining or any type of immunolabeling of specific proteins or markers for organelles.


Assuntos
Células Clonais/citologia , Puromicina/análogos & derivados , Proteínas Recombinantes/análise , Análise de Célula Única/métodos , Animais , Células CHO , Células Clonais/metabolismo , Cricetulus , Citometria de Fluxo , Biossíntese de Proteínas , Puromicina/química , Proteínas Recombinantes/química
15.
Biotechnol J ; 12(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27440252

RESUMO

As a possible viable and non-invasive method to identify high producing cells, Confocal Raman Microscopy was shown to be able to differentiate CHO host cell lines and derivative production clones. Cluster analysis of spectra and their derivatives was able to differentiate between different producer cell lines and a host, and also distinguished between an intracellular region of high lipid and protein content that in structure resembles the Endoplasmic Reticulum. This ability to identify the ER may be a major contributor to the identification of high producers. PCA enabled the discrimination even of host cell lines and their subclones with inherently higher production capacity. The method is thus a promising option that may contribute to early, non-invasive identification of high potential candidates during cell line development and possibly could also be used for proof of identity of established production clones.


Assuntos
Células CHO/citologia , Células CHO/ultraestrutura , Microscopia Confocal/métodos , Engenharia de Proteínas/métodos , Adalimumab/genética , Adalimumab/metabolismo , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Análise por Conglomerados , Cricetulus , Retículo Endoplasmático/ultraestrutura , Humanos , Lipídeos/química , Metais/química , Imagem Molecular/métodos , Análise de Componente Principal , Proteínas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise Espectral Raman/métodos
16.
Clin Biochem ; 50(7-8): 444-451, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28041932

RESUMO

OBJECTIVES: Diamine oxidase (DAO) is essential for extracellular degradation of histamine. For decades activity assays with inherent limitations were used to quantify the relative amounts of DAO. No reference DAO standard is available. Absolute DAO amounts cannot be determined. Controversy exists, whether DAO is circulating or not in non-pregnant individuals. The role of DAO as biomarker in various diseases is ambiguous. It is not clear, whether precise quantification of human DAO antigen using commercially available enzyme-linked immunosorbent assays (ELISAs) is possible. The objective was to develop a precise and robust ELISA to quantify DAO in various biological fluids. DESIGN AND METHODS: A research prototype ELISA was established using a mouse monoclonal antibody for capturing and a polyclonal rabbit serum IgG fraction for the detection of human DAO. The limit of blank (LoB), limit of detection (LoD) and estimated limit of quantification (eLoQ) and normal DAO concentrations in serum and plasma were determined. RESULTS: The LoB, LoD and eLoQ derived from 42 standard curves are 0.27, 0.48 and 0.7ng/mL respectively. The detection range using the LoD as the lower and the highest DAO standard as the upper boundary is 0.5 to 450ng/mL. Serum and plasma mean/median concentrations are between 0.5 and 1.5ng/mL in healthy volunteers (n=58) and mastocytosis patients (n=19) and plateau at approximately 145ng/mL (n=16) during pregnancy. Accurate quantification was not influenced by heparin (DAO is a heparin-binding protein), lipaemic or hemolytic serum. The measured DAO antigen concentrations are in close agreement with published enzymatic activity data using radioactive putrescine as substrate. CONCLUSIONS: This research prototype ELISA is able to reliably and accurately quantify human DAO in different biological fluids. The potential of DAO as biomarker in various diseases can be evaluated.


Assuntos
Amina Oxidase (contendo Cobre)/sangue , Animais , Anticorpos Monoclonais Murinos/química , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Imunoglobulina G/química , Masculino , Camundongos , Gravidez , Coelhos
17.
Alcohol ; 54: 51-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27401969

RESUMO

Human diamine oxidase (hDAO, EC 1.4.3.22) is the key enzyme in the degradation of extracellular histamine. Consumption of alcohol is a known trigger of mast cell degranulation in patients with mast cell activation syndrome. Ethanol may also interfere with enzymatic histamine degradation, but reports on the effects on DAO activity are controversial. There are also conflicting reports whether disulfiram, an FDA-approved agent in the treatment of alcohol dependence, inhibits DAO. We therefore investigated the inhibitory potential of ethanol and disulfiram and their metabolites on recombinant human DAO (rhDAO) in three different assay systems. Relevant concentrations of ethanol, acetaldehyde, and acetate did not inhibit rhDAO activity in an in vitro assay system using horseradish peroxidase (HRP) -mediated luminol oxidation. The aldehyde dehydrogenase (ALDH; EC 1.2.1.3) inhibitors cyanamide and its dimer dicyanamide also had no effect on DAO activity. In one assay system, the irreversible ALDH inhibitor disulfiram and its main metabolite diethyldithiocarbamate seemed to inhibit DAO activity. However, the decreased product formation was not due to a direct block of DAO activity but resulted from inhibition of peroxidase employed in the coupled system. Our in vitro data do not support a direct blocking effect of ethanol, disulfiram, and their metabolites on DAO activity in vivo.


Assuntos
Acetaldeído/farmacologia , Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Cianamida/farmacologia , Dissulfiram/farmacologia , Ditiocarb/farmacologia , Etanol/farmacologia , Animais , Células Cultivadas , Cricetulus , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas Recombinantes/efeitos dos fármacos
18.
J Biotechnol ; 227: 120-130, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27063138

RESUMO

Human diamine oxidase (hDAO) efficiently degrades polyamines and histamine. Reduced enzyme activities might cause complications during pregnancy and be involved in histamine intolerance. So far hDAO has been characterized after isolation from either native sources or the heterologous production in insect cells. Accessibility to human enzyme is limited and insect cells produce non-human glycosylation patterns that may alter its biochemical properties. We present the heterologous expression of hDAO in Chinese Hamster Ovary (CHO) cells and a three step purification protocol. Analysis of metal content using ICP-MS revealed that 93% of the active sites were occupied by copper. Topaquinone (TPQ) cofactor content was determined using phenylhydrazine titration. Ninety-four percent of DAO molecules contained TPQ and therefore the copper content at the active site was indirectly confirmed. Mass spectrometric analysis was conducted to verify sequence integrity of the protein and to assess the glycosylation profile. Electronic circular dichroism and UV-vis spectra data were used to characterize structural properties. The substrate preference and kinetic parameters were in accordance with previous publications. The establishment of a recombinant production system for hDAO enables us to generate decent amounts of protein with negligible impurities to address new scientific questions.


Assuntos
Amina Oxidase (contendo Cobre)/biossíntese , Proteínas Recombinantes/biossíntese , Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/isolamento & purificação , Sequência de Aminoácidos , Animais , Western Blotting , Células CHO , Cromatografia Líquida , Dicroísmo Circular , Coenzimas/metabolismo , Cricetinae , Cricetulus , Di-Hidroxifenilalanina/análogos & derivados , Di-Hidroxifenilalanina/metabolismo , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Glicosilação , Humanos , Cinética , Metais/metabolismo , Peptídeos/química , Fenil-Hidrazinas/metabolismo , Polissacarídeos/química , Estrutura Secundária de Proteína , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa