Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Beilstein J Org Chem ; 18: 1524-1531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36447520

RESUMO

Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infections in infants. Currently, ribavirin, a nucleoside analog containing a 1,2,4-triazole-3-carboxamide moiety, is a first-line drug for its treatment, however, its clinical use has been limited due to its side effects. Here, we designed two new nitroaryl-1,2,3-triazole triterpene derivatives as novel anti-RSV drugs. Their anti-RSV and cytotoxic activity were evaluated in vitro, RSV protein F gene effects by RT-PCR and molecular modeling with inosine monophosphate dehydrogenase (IMPDH) were performed. Compound 8 was the best performing compound, with an EC50 value of 0.053 µM, a TI of 11160.37 and it inhibited hRSV protein F gene expression by approximately 65%. Molecular docking showed a top-ranked solution located in the same region occupied by crystallographic ligands in their complex with IMPDH. The results obtained in this study suggest that compound 8 might be a new anti-RSV candidate.

2.
Microb Pathog ; 140: 103967, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31911193

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a major public health concern representing about 60% of S. aureus isolated from hospitalized patients in countries such as USA and Brazil in the last years. Additionally, the ability to adhere to surfaces and the development of biofilms are important properties of pathogenic bacteria involved in medical device-associated infections, and staphylococci are recognized as the major etiologic agents in these situations. The aim of this study is to evaluate three Brosimum acutifolium flavonoids, 4'-hydroxy-7,8(2″,2″-dimethylpyran)flavan (1), brosimine b (2) and 4-hydroxy-lonchocarpin (3), regarding their antibiofilm, antibacterial and antioxidant activities. Flavonoids 1 and 2 were able to reduce S. aureus viability within preformed biofilms in 73% at 50 µM while 2 also reduced biofilm biomass in 48% at 100 µM. Flavonoid 3 was not able to reduce biofilm biomass at assessed concentrations. When tested against methicillin-resistant S. aureus (MRSA) strains, 2 (100 µM) reduced 70%-98% of viable bacteria within 24h-old biofilms. The minimum inhibitory concentration against the methicillin-sensitive Staphylococcus aureus ATCC 25904 was 50 µM for the three compounds. In preliminary assays to evaluate cytotoxicity, 1 was highly hemolytic at concentrations above 50 µM while 2 and 3 did not cause significant hemolysis at 100 µM. The antioxidant activity was observed only in the ethanolic extract and 2. In vivo toxicity evaluations using Galleria mellonella larvae as alternative host model resulted in 83.3% survival for treatment with 1, 76.7% for 2, and 100% for 3 at 500 mg/kg. This study highlights the potential of these flavonoids, especially 2, as antibiofilm agent to control preformed S. aureus biofilms.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Flavonoides/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Antibacterianos/química , Flavonoides/química , Humanos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
3.
Bioorg Med Chem Lett ; 28(3): 265-272, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29326018

RESUMO

In this report, we describe the semisynthesis of two series of ursolic and betulinic acid derivatives through designed by modifications at the C-3 and C-28 positions and demonstrate their antimalarial activity against chloroquine-resistant P. falciparum (W2 strain). Structural modifications at C-3 were more advantageous to antimalarial activity than simultaneous modifications at C-3 and C-28 positions. The ester derivative, 3ß-butanoyl betulinic acid (7b), was the most active compound (IC50 = 3.4 µM) and it did not exhibit cytotoxicity against VERO nor HepG2 cells (CC50 > 400 µM), showing selectivity towards parasites (selectivity index > 117.47). In combination with artemisinin, compound 7b showed an additive effect (CI = 1.14). While docking analysis showed a possible interaction of 7b with the Plasmodium protease PfSUB1, with an optimum binding affinity of -7.02 kcal/mol, the rather low inhibition displayed on a Bacillus licheniformis subtilisin A protease activity assay (IC50 = 93 µM) and the observed accumulation of ring forms together with a delay of appearance of trophozoites in vitro suggests that the main target of 3ß-butanoyl betulinic acid on Plasmodium may be related to other molecules and processes pertaining to the ring stage. Therefore, compound 7b is the most promising compound for further studies on antimalarial chemotherapy. The results obtained in this study provide suitable information about scaffolds to develop novel antimalarials from natural sources.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química , Células Vero
4.
Parasitol Res ; 117(5): 1573-1580, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29572567

RESUMO

Trichomonas vaginalis is an extracellular parasite that binds to the epithelium of the human urogenital tract and causes the sexually transmitted infection, trichomoniasis. In view of increased resistance to drugs belonging to the 5-nitroimidazole class, new treatment alternatives are urgently needed. In this study, eight semisynthetized triterpene derivatives were evaluated for in vitro anti-T. vaginalis activity. Ursolic acid and its derivative, 3-oxime-urs-12-en-28-oic-ursolic acid (9), presented the best anti-T. vaginalis activity when compared to other derivatives, with minimum inhibitory concentration (MIC) at 25 µM. Moreover, 9 was active against several T. vaginalis fresh clinical isolates. Hemolysis assay demonstrated that 9 presented a low hemolytic effect. Importantly, 25 µM 9 was not cytotoxic against the Vero cell lineage. Finally, we demonstrated that compound 9 acts synergistically with metronidazole against a T. vaginalis metronidazole-resistant isolate. This report reveals the high potential of the triterpenoid derivative 9 as trichomonicidal agent.


Assuntos
Antitricômonas/farmacologia , Sinergismo Farmacológico , Metronidazol/farmacologia , Tricomoníase/tratamento farmacológico , Vaginite por Trichomonas/tratamento farmacológico , Trichomonas vaginalis/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Chlorocebus aethiops , Resistência a Medicamentos , Quimioterapia Combinada , Feminino , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Tricomoníase/parasitologia , Vaginite por Trichomonas/parasitologia , Triterpenos/química , Células Vero , Ácido Ursólico
5.
Arch Pharm (Weinheim) ; : e1800108, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-29999539

RESUMO

The human respiratory syncytial virus (hRSV) is a leading cause of hospitalization due to acute lower respiratory infection especially in infants and young children, sometimes causing fatal cases. The monoclonal antibody palivizumab is one of the available options for preventing this virus, and at the moment there are several hRSV vaccine trials underway. Unfortunately, the only drug option to treat hRSV infection is ribavirin, which can be used in severe high-risk cases. For this reason, new medicines are needed and, in this context, the triterpenes and their derivatives are promising alternatives, since many of them have shown important antiviral activity, such as bevirimat. Therefore, we report three series of triterpene (betulin (BE), betulinic acid (BA), and ursolic acid (UA)) derivatives tested against hRSV. The derivatives were synthesized by using commercial anhydrides in an easy and inexpensive step reaction. For the antiviral assay, A549 cells were infected by hRSV and after 96 h of compound or ribavirin (positive control) treatment, the cell viability was tested by MTT assay. DMSO, non-infected cells and infected cells without treatment were used as negative control. The triterpene esterification at the hydroxyl group resulted in 17 derivatives. The 3,28-di-O-acetylbetulin derivative (1a) showed the best results for cell viability, and real-time PCR amplification was performed for 1a treatment. Remarkably, one new anti-hRSV prototype was obtained through an easy synthesis of BE, which shall represent an alternative for a new lead compound for anti-hRSV therapy.

6.
Purinergic Signal ; 13(4): 569-577, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28879644

RESUMO

Trichomonas vaginalis is a flagellated protozoan that affects the human urogenital tract causing 276.4 million new infections a year. The parasite elicits a vaginal mucosal infiltration of immune cells, especially neutrophils which are considered to be primarily responsible for cytological change observed at the infection site as well as the major contributor in the inflammatory response against the parasite. Extracellular nucleotides and their nucleosides are signaling compounds involved in several biological processes, including inflammation and immune responses. Once in the extracellular space, the nucleotides and nucleosides can directly activate the purinergic receptors. Herein, we investigated the involvement of purinergic signaling on the production of reactive oxygen species (ROS) and cytokines by T. vaginalis-stimulated neutrophils. Parasites were able to induce an increase in ROS and IL-8 levels while they did not promote IL-6 secretion or neutrophil elastase activity. Adenine and guanine nucleotides or nucleosides were not able to modulate ROS and cytokine production; however, when T. vaginalis-stimulated neutrophils were incubated with adenosine and adenosine deaminase inhibitor, the levels of ROS and IL-8 were significantly reduced. These immunosuppressive effects were probably a response to the higher bioavailability of adenosine found in the supernatant as result of inhibition of enzyme activity. The involvement of P1 receptors was investigated by immunofluorescence and A1 receptor was the most abundant. Our data show that the influence of purinergic signaling, specifically those effects associated with adenosine accumulation, on the modulation of production of proinflammatory mediators by T. vaginalis-stimulated neutrophils contribute to the understanding of immunological aspects of trichomoniasis.


Assuntos
Adenosina/farmacologia , Interleucina-8/biossíntese , Neutrófilos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Trichomonas vaginalis/imunologia , Células Cultivadas , Feminino , Humanos , Neutrófilos/metabolismo
7.
Phytother Res ; 31(8): 1199-1208, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28568647

RESUMO

Passiflora incarnata L. (Passifloraceae) has been traditionally used for treatment of anxiety, insomnia, drug addiction, mild infections, and pain. The aim of this study was to investigate the effect of a commercial extract of P. incarnata in the analgesia induced by alcohol withdrawal syndrome in rats. In addition, brain-derived neurotrophic factor and interleukin-10 levels were evaluated in prefrontal cortex, brainstem, and hippocampus. Male adult rats received by oral gavage: (1: water group) water for 19 days, 1 day interval and water (8 days); (2: P. incarnata group) water for 19 days, 1 day interval and P. incarnata 200 mg/kg (8 days); (3: alcohol withdrawal group) alcohol for 19 days, 1 day interval and water (8 days); and (4: P. incarnata in alcohol withdrawal) alcohol for 19 days, 1 day interval and P. incarnata 200 mg/kg (8 days). The tail-flick and hot plate tests were used as nociceptive response measures. Confirming previous study of our group, it was showed that alcohol-treated groups presented an increase in the nociceptive thresholds after alcohol withdrawal, which was reverted by P. incarnata, measured by the hot plate test. Besides, alcohol treatment increased brain-derived neurotrophic factor and interleukin-10 levels in prefrontal cortex, which was not reverted by P. incarnata. Considering these results, the P. incarnata treatment might be a potential therapy in the alcohol withdrawal syndrome. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Nociceptividade/efeitos dos fármacos , Passiflora/química , Extratos Vegetais/farmacologia , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Interleucina-10/metabolismo , Masculino , Medição da Dor , Ratos , Ratos Wistar
8.
Bioorg Med Chem Lett ; 26(9): 2229-36, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27020521

RESUMO

Trichomonas vaginalis causes trichomoniasis; the most common but overlooked non-viral sexually transmitted disease worldwide. The treatment is based at 5'-nitroimidazoles, however, failure are related to resistance of T. vaginalis to chemotherapy. Caatinga is a uniquely Brazilian region representing a biome with type desert vegetation and plants present diverse biological activity, however, with few studies. The aim of this study was to investigate the activity against T. vaginalis of different plants from Caatinga and identify the compounds responsible by the activity. A bioguided fractionation of Manilkara rufula was performed and four major compounds were identified: caproate of α-amyrin (1b), acetate of ß-amyrin (2a), caproate of ß-amyrin (2b), and acetate of lupeol (3a). In addition, six derivatives of α-amyrin (1), ß-amyrin (2) and lupeol (3) were synthesized and tested against the parasite. Ursolic acid (5) reduced about 98% of parasite viability after 2h of incubation and drastic ultrastructural alterations were observed by scanning electron microscopy. Moreover, 5 presented high cytotoxicity to HMVII and HeLa cell line and low cytotoxicity against Vero line at 50 µM (MIC against the parasite). Metronidazole effect against T. vaginalis resistant isolate was improved when in association with 5.


Assuntos
Extratos Vegetais/farmacologia , Plantas Medicinais/química , Trichomonas vaginalis/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Plantas Medicinais/classificação
9.
Biomed Chromatogr ; 30(3): 459-65, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26205148

RESUMO

Gemifloxacin mesylate (GFM), chemically (R,S)-7-[(4Z)-3-(aminomethyl)-4-(methoxyimino)-1-pyrrolidinyl]-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid methanesulfonate, is a synthetic broad-spectrum antibacterial agent. Although many papers have been published in the literature describing the stability of fluorquinolones, little is known about the degradation products of GFM. Forced degradation studies of GFM were performed using radiation (UV-A), acid (1 mol L(-1) HCl) and alkaline conditions (0.2 mol L(-1) NaOH). The main degradation product, formed under alkaline conditions, was isolated using semi-preparative LC and structurally elucidated by nuclear magnetic resonance (proton - (1) H; carbon - (13) C; correlate spectroscopy - COSY; heteronuclear single quantum coherence - HSQC; heteronuclear multiple-bond correlation - HMBC; spectroscopy - infrared, atomic emission and mass spectrometry techniques). The degradation product isolated was characterized as sodium 7-amino-1-pyrrolidinyl-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylate, which was formed by loss of the 3-(aminomethyl)-4-(methoxyimino)-1-pyrrolidinyl ring and formation of the sodium carboxylate. The structural characterization of the degradation product was very important to understand the degradation mechanism of the GFM under alkaline conditions. In addition, the results highlight the importance of appropriate protection against hydrolysis and UV radiation during the drug-development process, storage, handling and quality control.


Assuntos
Fluoroquinolonas/análise , Fluoroquinolonas/química , Naftiridinas/análise , Naftiridinas/química , Cromatografia Líquida , Estabilidade de Medicamentos , Gemifloxacina , Espectroscopia de Ressonância Magnética , Fotólise
10.
Trop Med Int Health ; 20(1): 29-39, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25308185

RESUMO

OBJECTIVES: To semisynthesise piperazine derivatives of betulinic acid to evaluate antimalarial activity, cytotoxicity and action mechanism. METHODS: The new derivatives were evaluated against the CQ-sensitive Plasmodium falciparum 3D7 strain by flow cytometry (FC) using YOYO-1 as stain. Cytotoxicity of 4a and 4b was performed with HEK293T cells for 24 and 48 h by MTT assay. The capability of compound 4a to modulate Ca(2+) in the trophozoite stage was investigated. The trophozoites were stained with Fluo4-AM and analysed by spectrofluorimetry. Effect on mitochondrial membrane potential (ΔΨm) was tested for 4a by FC with DiOC6 (3) as stain. For ß-haematin assay, 4a was incubated for 24 h with reagents such as haemin, and the fluorescence was measured by FlexStation at an absorbance of 405 nm. RESULTS: Antimalarial activity of 4a and 4b was IC50 = 1 and 4 µm, respectively. Compound 4a displayed cytotoxicity with IC50 = 69 and 29 µm for 24 and 48 h, respectively, and 4b was not cytotoxic at the tested concentrations. Addition of 4a leads to an increase in cytosolic Ca(2+) . We have measured ΔΨm after treating parasites with the compound. Data on Figure 4a show that mitochondria were not affected. The action mechanism for 4a, inhibition of ß-haematin formation (17%), was lower than CQ treatment (83%; IC50 = 3 mm). CONCLUSION: Compound 4a showed excellent antimalarial activity, and its action mechanism is involved in Ca(2+) pathway(s).


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Triterpenos/farmacologia , Antimaláricos/síntese química , Citometria de Fluxo , Células HEK293/efeitos dos fármacos , Hemeproteínas/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Triterpenos Pentacíclicos , Espectrometria de Fluorescência , Triterpenos/síntese química , Trofozoítos/efeitos dos fármacos , Ácido Betulínico
11.
Molecules ; 20(5): 9229-41, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26007181

RESUMO

Emerging yeasts are among the most prevalent causes of systemic infections with high mortality rates and there is an urgent need to develop specific, effective and non-toxic antifungal agents to respond to this issue. In this study 35 aldehydes, hydrazones and hydrazines were obtained and their antifungal activity was evaluated against Candida species (C. parapsilosis, C. tropicalis, C. krusei, C. albicans, C. glabrata and C. lusitaneae) and Trichosporon asahii, in an in vitro screening. The minimum inhibitory concentrations (MICs) of the active compounds in the screening was determined against 10 clinical isolates of C. parapsilosis and 10 of T. asahii. The compounds 4-pyridin-2-ylbenzaldehyde] (13a) and tert-butyl-(2Z)-2-(3,4,5-trihydroxybenzylidine)hydrazine carboxylate (7b) showed the most promising MIC values in the range of 16-32 µg/mL and 8-16 µg/mL, respectively. The compounds' action on the stability of the cell membrane and cell wall was evaluated, which suggested the action of the compounds on the fungal cell membrane. Cell viability of leukocytes and an alkaline comet assay were performed to evaluate the cytotoxicity. Compound 13a was not cytotoxic at the active concentrations. These results support the discovery of promising candidates for the development of new antifungal agents.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Hidrazonas/farmacologia , Trichosporon/efeitos dos fármacos , Antifúngicos/síntese química , Antifúngicos/química , Benzaldeídos/farmacologia , Candida/patogenicidade , Candidíase/tratamento farmacológico , Ácidos Carboxílicos/farmacologia , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Hidrazinas/farmacologia , Hidrazonas/síntese química , Hidrazonas/química , Leucócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Piridinas/farmacologia , Trichosporon/patogenicidade , Tricosporonose/tratamento farmacológico
12.
Parasitol Res ; 113(8): 2933-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24880238

RESUMO

Trichomonas vaginalis is a flagellated parasite that causes trichomonosis, the most common non-viral sexually transmitted disease (STD) in the world. Worryingly, trichomonosis is associated to increased transmission of HIV. Due to high frequency of the infection during pregnancy and the development of metronidazole-resistant isolates, therapeutic alternatives to 5-nitroimidazole are being searched. Triterpenes are natural products presenting several biological activities such as anti-protozoal activity. The aim of this study was to evaluate the in vitro anti-T. vaginalis activity from betulinic and ursolic acids, as well as semisynthetic derivatives obtained. Compounds obtained from betulinic acid presented better activity than those from ursolic acid. Piperazine derivatived from betulinic acid presented minimum inhibitory concentration (MIC) value of 91.2 µM, and the kinetic growth curve performed with parasites treated with this most active compound revealed complete inhibition of trophozoite proliferation at 2 h of incubation and total abolition of trophozoite growth in 24 h, revealing that the piperazine derivative is an efficient trichomonacidal molecule. The same compound promoted total erythrocyte lysis and lactate dehydrogenase (LDH) liberation of 83 and 100% (at 45.6 and 91.2 µM, respectively), indicating parasite membrane damage. The piperazine derivative demonstrated cytotoxic effect against the HMVII and HeLa cell lineages at the MIC value. This is the first report of semisynthetic triterpenoid derivatives with anti-T. vaginalis activity, revealing the high potential of these compounds as trichomonacidal agents.


Assuntos
Antitricômonas/farmacologia , Trichomonas vaginalis/efeitos dos fármacos , Triterpenos/farmacologia , Resistência a Medicamentos , Eritrócitos/efeitos dos fármacos , Feminino , Células HeLa , Hemólise , Humanos , Masculino , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Triterpenos Pentacíclicos , Piperazina , Piperazinas/farmacologia , Trichomonas vaginalis/crescimento & desenvolvimento , Ácido Betulínico , Ácido Ursólico
13.
Malar J ; 12: 89, 2013 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-23497003

RESUMO

BACKGROUND: The discovery and development of anti-malarial compounds of plant origin and semisynthetic derivatives thereof, such as quinine (QN) and chloroquine (CQ), has highlighted the importance of these compounds in the treatment of malaria. Ursolic acid analogues bearing an acetyl group at C-3 have demonstrated significant anti-malarial activity. With this in mind, two new series of betulinic acid (BA) and ursolic acid (UA) derivatives with ester groups at C-3 were synthesized in an attempt to improve anti-malarial activity, reduce cytotoxicity, and search for new targets. In vitro activity against CQ-sensitive Plasmodium falciparum 3D7 and an evaluation of cytotoxicity in a mammalian cell line (HEK293T) are reported. Furthermore, two possible mechanisms of action of anti-malarial compounds have been evaluated: effects on mitochondrial membrane potential (ΔΨm) and inhibition of ß-haematin formation. RESULTS: Among the 18 derivatives synthesized, those having shorter side chains were most effective against CQ-sensitive P. falciparum 3D7, and were non-cytotoxic. These derivatives were three to five times more active than BA and UA. A DiOC(6)(3) ΔΨm assay showed that mitochondria are not involved in their mechanism of action. Inhibition of ß-haematin formation by the active derivatives was weaker than with CQ. Compounds of the BA series were generally more active against P. falciparum 3D7 than those of the UA series. CONCLUSIONS: Three new anti-malarial prototypes were obtained from natural sources through an easy and relatively inexpensive synthesis. They represent an alternative for new lead compounds for anti-malarial chemotherapy.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Triterpenos/farmacologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Triterpenos Pentacíclicos , Triterpenos/química , Triterpenos/isolamento & purificação , Triterpenos/toxicidade , Ácido Betulínico , Ácido Ursólico
14.
Molecules ; 18(9): 11022-32, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24022763

RESUMO

Baccharis trimera is used in folk medicine as a tea for digestive and liver diseases. It possesses anti-inflammatory and antioxidant properties that are related to the presence of phenolic compounds. The aim of this work was to investigate the anti-proliferative properties of phenolic (PHE) and terpenoid (SAP) compounds from B. trimera on human cervical cancer. The treatment of SiHa cells with PHE for 24 h suppressed colony formation in a dose-dependent manner, inhibited proliferation and inhibited cell motility. Although SAP inhibited the proliferation of SiHa cells in a dose-dependent manner, it increased colony formation and did not inhibit cell motility. PHE and SAP also promoted a significant increase in lactate dehydrogenase levels in the culture medium in a dose-dependent manner, indicating a loss of cell membrane integrity. Moreover, PHE promoted necrotic cell death, whereas SAP induced apoptosis. These compounds are new anticancer prototypes due their significant anticancer activity demonstrated herein.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Baccharis/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Terpenos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , L-Lactato Desidrogenase/metabolismo , Necrose , Fenóis/isolamento & purificação , Componentes Aéreos da Planta/química , Extratos Vegetais/isolamento & purificação , Terpenos/isolamento & purificação
15.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111343

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the formation of the BCR-ABL (breakpoint cluster region-Abelson) oncoprotein. As many patients display therapeutic resistance, the development of new drugs based on semisynthetic products represents a new potential therapeutic approach for treating the disease. In this study, we investigated the cytotoxic activity, possible mechanism of action of a hybrid compound of betulinic acid (BA) and brosimine B in CML cell lines that are sensitive (K-562) and resistant (K-562R) to imatinib, in addition to evaluating lower doses of imatinib in combination with the hybrid compound. The effects of the compound, and its combination with imatinib, on apoptosis, cell cycle, autophagy and oxidative stress were determined. The compound was cytotoxic in K-562 (23.57 ± 2.87 µM) and K-562R (25.80 ± 3.21 µM) cells, and a synergistic effect was observed when it was associated with imatinib. Apoptosis was mediated by the caspase 3 and 9 intrinsic pathway, and cell cycle evaluation showed arrest at G0/G1. In addition, the hybrid compound increased the production of reactive oxygen species and induced autophagy by increasing LC3II and Beclin-1 mRNA levels. Results suggest that this hybrid compound causes the death of both imatinib-sensitive and -resistant cell lines and may hold potential as a new anticancer treatment against CML.

16.
Parasitol Res ; 110(6): 2551-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22218924

RESUMO

Trichomonas vaginalis is a flagellated protozoan that causes trichomonosis, the most prevalent non-viral STD worldwide. The pathogen has been associated with serious health consequences including predisposition to cervical cancer and adverse pregnancy outcomes and infertility. It also acts as a co-factor in HIV transmission and acquisition. The 5-nitroimidazole drugs are used in the treatment, however, treatment noncompliance is observed, and a growing number of T. vaginalis isolates resistant to the drugs have been related. Saponins are natural products possessing many biological activities such as antiprotozoan activity. The aim of this study was to evaluate the anti-T. vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Saponins from Passiflora alata and Quillaja saponaria presented the best anti-T. vaginalis activity (MIC = 0.025%). In addition, all samples induced erythrocyte lysis and LDH release. As far as we know, this is the first report demonstrating the potential anti-T. vaginalis activity of these saponins.


Assuntos
Antiprotozoários/farmacologia , Ilex/química , Passiflora/química , Quillaja/química , Saponinas/farmacologia , Trichomonas vaginalis/efeitos dos fármacos , Antiprotozoários/isolamento & purificação , Antiprotozoários/toxicidade , Eritrócitos/efeitos dos fármacos , Atividades Humanas , L-Lactato Desidrogenase/metabolismo , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Parasitária , Saponinas/isolamento & purificação , Saponinas/toxicidade
17.
Molecules ; 17(10): 12003-14, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23085651

RESUMO

More than 40% of the World population is at risk of contracting malaria, which affects primarily poor populations in tropical and subtropical areas. Antimalarial pharmacotherapy has utilised plant-derived products such as quinine and artemisinin as well as their derivatives. However, worldwide use of these antimalarials has caused the spread of resistant parasites, resulting in increased malaria morbidity and mortality. Considering that the literature has demonstrated the antimalarial potential of triterpenes, specially betulinic acid (1) and ursolic acid (2), this study investigated the antimalarial activity against P. falciparum chloroquine-sensitive 3D7 strain of some new derivatives of 1 and 2 with modifications at C-3 and C-28. The antiplasmodial study employed flow cytometry and spectrofluorimetric analyses using YOYO-1, dihydroethidium and Fluo4/AM for staining. Among the six analogues obtained, compounds 1c and 2c showed excellent activity (IC50 = 220 and 175 nM, respectively) while 1a and b demonstrated good activity (IC50 = 4 and 5 µM, respectively). After cytotoxicity evaluation against HEK293T cells, 1a was not toxic, while 1c and 2c showed IC50 of 4 µM and a selectivity index (SI) value of 18 and 23, respectively. Moreover, compound 2c, which presents the best antiplasmodial activity, is involved in the calcium-regulated pathway(s).


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Triterpenos/síntese química , Triterpenos/farmacologia , Antimaláricos/toxicidade , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Células HEK293 , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária , Triterpenos Pentacíclicos , Triterpenos/toxicidade , Ácido Betulínico , Ácido Ursólico
18.
Molecules ; 17(1): 1113-23, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22269829

RESUMO

Baccharis trimera is a plant popularly used as a tea and to treat gastrointestinal diseases and inflammatory processes as well. The total phenolic content was determined and the antioxidant and anti-inflammatory activities of six extracts (dichloromethane, ethyl acetate, butanol, aqueous, saponin and phenolic) from B. trimera were evaluated. Using carrageenan-induced pleurisy as a model of acute inflammation, the phenolic extract at 15 mg/kg decreased significantly the analyzed parameters when compared to the carrageenan group ( p < 0.05), thus showing potential anti-inflammatory activity. The total phenolic content and antioxidant activity were evaluated by the Folin-Ciocalteau and DPPH methods, respectively. Phenolic and ethyl acetate extracts presented higher antioxidant activity ( p < 0.05) than ascorbic acid. The phenolic extract also showed the highest antioxidant potential in relation to the other extracts, thus suggesting that the antioxidant and anti-inflammatory activities were due to the presence of phenolic compounds.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Baccharis/química , Fenóis/química , Extratos Vegetais/farmacologia , Animais , Ácido Ascórbico/metabolismo , Compostos de Bifenilo/metabolismo , Carragenina , Feminino , Concentração Inibidora 50 , Óxido Nítrico/metabolismo , Picratos/metabolismo , Folhas de Planta/química , Pleurisia/patologia , Ratos , Ratos Wistar
19.
Plant Foods Hum Nutr ; 67(2): 156-61, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22544347

RESUMO

Leaves of Ilex paraguariensis are used to prepare a tea known as maté which is a common beverage in several South American countries. The ethanol extract was fractionated to identify the compounds responsible for the anti-adipogenic activity in 3T3-L1 cells. Extracts of both fresh and dried maté leaves were subjected to column chromatography using molecular permeation to obtain the saponin (20 % yields) and the polyphenol extracts (40 % yields) from the fresh and dried leaves. The phenolic content was determined using high-performance liquid chromatography analysis and the Folin-Ciocalteau method. Also, maté extracts (50 µg/ml to 1,000 µg/ml) did not display citotoxicity using MTT. The polyphenol extract from the dried leaves was the most effective (50 µg/ml) in the inhibition of triglyceride accumulation in 3T3-L1 adipocytes, and rutin (100 µg/ml) likely accounted for a large portion of this activity. Additionally, maté extracts had a modulatory effect on the expression of genes related to the adipogenesis as PPARγ2, leptin, TNF-α and C/EBPα.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Bebidas/análise , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica , Ilex paraguariensis/química , Leptina/genética , Leptina/metabolismo , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Folhas de Planta/química , Polifenóis/análise , Rutina/metabolismo , América do Sul , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
ChemMedChem ; 16(12): 1835-1860, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33682360

RESUMO

Chronic myeloid leukemia (CML) is a neoplasm characterized by BCR-ABL1, an oncoprotein with vital role in leukemogenesis. Its inhibition by tyrosine kinase inhibitors represents the main choice of treatment. However, therapeutic failure is worrying given the lack of pharmacological options. Pentacyclic triterpenes are phytochemicals with outstanding antitumoral properties and have also been explored as a basis for the design of potential leads. In this review, we have gathered and discuss data regarding both natural and semisynthetic pentacyclic triterpenes applied to CML cell treatment. We found consistent evidence that the class of pentacyclic triterpenes in general exerts promising pro-apoptotic and antiproliferative activities in sensitive and resistant CML cells, and thus represents a rich source for drug development. We also analyze the predicted drug-like properties of the molecules, discuss the structural changes with biological implications and show the great opportunities this class represents, as well as the perspectives they provide on drug discovery for CML treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Estrutura Molecular , Triterpenos Pentacíclicos/síntese química , Triterpenos Pentacíclicos/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa