Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(33): 18414-18431, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37525328

RESUMO

Lysosomes remain powerful organelles and important targets for cancer therapy because cancer cell proliferation is greatly dependent on effective lysosomal function. Recent studies have shown that lysosomal membrane permeabilization induces cell death and is an effective way to treat cancer by bypassing the classical caspase-dependent apoptotic pathway. However, most lysosome-targeted anticancer drugs have very low selectivity for cancer cells. Here, we show intra-lysosomal self-assembly of a peptide amphiphile as a powerful technique to overcome this problem. We designed a peptide amphiphile that localizes in the cancer lysosome and undergoes cathepsin B enzyme-instructed supramolecular assembly. This localized assembly induces lysosomal swelling, membrane permeabilization, and damage to the lysosome, which eventually causes caspase-independent apoptotic death of cancer cells without conventional chemotherapeutic drugs. It has specific anticancer effects and is effective against drug-resistant cancers. Moreover, this peptide amphiphile exhibits high tumor targeting when attached to a tumor-targeting ligand and causes significant inhibition of tumor growth both in cancer and drug-resistant cancer xenograft models.


Assuntos
Apoptose , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Lisossomos/metabolismo , Caspases/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Linhagem Celular Tumoral
2.
Small ; 19(22): e2300218, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36864579

RESUMO

Metal-organic framework (MOF) nanoparticles have recently emerged as a promising vehicle for drug delivery with high porosity and feasibility. However, employing a MOF-based drug delivery system remains a challenge due to the difficulty in controlling interfaces of particles in a biological environment. In this paper, protein corona-blocked Zr6 -based MOF (PCN-224) nanoparticles are presented for targeted cancer therapy with high efficiency. The unmodified PCN-224 surface is precoated with glutathione transferase (GST)-fused targetable affibody (GST-Afb) proteins via simple mixing conjugations instead of chemical modifications that can induce the impairment of proteins. GST-Afb proteins are shown to stably protect the surface of PCN-224 particles in a specific orientation with GST adsorbed onto the porous surface and the GST-linked Afb posed outward, minimizing the unwanted interfacial interactions of particles with external biological proteins. The Afb-directed cell-specific targeting ability of particles and consequent induction of cell death is demonstrated both in vitro and in vivo by using two kinds of Afb, which targets the surface membrane receptor, human epidermal growth factor receptor 2 (HER2) or epidermal growth factor receptor (EGFR). This study provides insight into the way of regulating the protein-adhesive surface of MOF nanoparticles and designing a more effective MOF-hosted targeted delivery system.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Estruturas Metalorgânicas/metabolismo , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Proteínas de Membrana
3.
J Am Chem Soc ; 144(12): 5503-5516, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35235326

RESUMO

Biological nanomachines, including proteins and nucleic acids whose function is activated by conformational changes, are involved in every biological process, in which their dynamic and responsive behaviors are controlled by supramolecular recognition. The development of artificial nanomachines that mimic the biological functions for potential application as therapeutics is emerging; however, it is still limited to the lower hierarchical level of the molecular components. In this work, we report a synthetic machinery nanostructure in which actuatable molecular components are integrated into a hierarchical nanomaterial in response to external stimuli to regulate biological functions. Two nanometers core-sized gold nanoparticles are covered with ligand layers as actuatable components, whose folding/unfolding motional response to the cellular environment enables the direct penetration of the nanoparticles across the cellular membrane to disrupt intracellular organelles. Furthermore, the pH-responsive conformational movements of the molecular components can induce the apoptosis of cancer cells. This strategy based on the mechanical motion of molecular components on a hierarchical nanocluster would be useful to design biomimetic nanotoxins.


Assuntos
Fenômenos Biológicos , Nanopartículas Metálicas , Nanoestruturas , Membrana Celular , Ouro , Nanoestruturas/toxicidade
4.
Nat Mater ; 20(3): 385-394, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33398120

RESUMO

Polymeric materials have been used to realize optical systems that, through periodic variations of their structural or optical properties, interact with light-generating holographic signals. Complex holographic systems can also be dynamically controlled through exposure to external stimuli, yet they usually contain only a single type of holographic mode. Here, we report a conjugated organogel that reversibly displays three modes of holograms in a single architecture. Using dithering mask lithography, we realized two-dimensional patterns with varying cross-linking densities on a conjugated polydiacetylene. In protic solvents, the organogel contracts anisotropically to develop optical and structural heterogeneities along the third dimension, displaying holograms in the form of three-dimensional full parallax signals, both in fluorescence and bright-field microscopy imaging. In aprotic solvents, these heterogeneities diminish as organogels expand, recovering the two-dimensional periodicity to display a third hologram mode based on iridescent structural colours. Our study presents a next-generation hologram manufacturing method for multilevel encryption technologies.

5.
ACS Nano ; 18(24): 15790-15801, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38847355

RESUMO

Targeted drug delivery systems based on metal-organic frameworks (MOFs) have progressed tremendously since inception and are now widely applicable in diverse scientific fields. However, translating MOF agents directly to targeted drug delivery systems remains a challenge due to the biomolecular corona phenomenon. Here, we observed that supramolecular conjugation of antibodies to the surface of MOF particles (MOF-808) via electrostatic interactions and coordination bonding can reduce protein adhesion in biological environments and show stealth shields. Once antibodies are stably conjugated to particles, they were neither easily exchanged with nor covered by biomolecule proteins, which is indicative of the stealth effect. Moreover, upon conjugation of the MOF particle with specific targeted antibodies, namely, anti-CD44, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor (EGFR), the resulting hybrid exhibits an augmented targeting efficacy toward cancer cells overexpressing these receptors, such as HeLa, SK-BR-3, and 4T1, as evidenced by flow cytometry. The therapeutic effectiveness of the antibody-conjugated MOF (anti-M808) was further evaluated through in vivo imaging and the assessment of tumor inhibition effects using IR-780-loaded EGFR-M808 in a 4T1 tumor xenograft model employing nude mice. This study therefore provides insight into the use of supramolecular antibody conjugation as a promising method for developing MOF-based drug delivery systems.


Assuntos
Estruturas Metalorgânicas , Camundongos Nus , Estruturas Metalorgânicas/química , Humanos , Animais , Camundongos , Sistemas de Liberação de Medicamentos , Anticorpos/química , Anticorpos/imunologia , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Células HeLa , Camundongos Endogâmicos BALB C , Antineoplásicos/química , Antineoplásicos/farmacologia , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Feminino
6.
Nat Commun ; 14(1): 3838, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37380657

RESUMO

Colloids often behave in a manner similar to their counterparts in molecular space and are used as model systems to understand molecular behavior. Here, we study like-charged colloidal attractions between a permanent dipole on an interfacial particle and its induced dipole on a water-immersed particle caused by diffuse layer polarization. We find that the scaling behavior of the measured dipole-induced dipole (D‒I) interaction via optical laser tweezers is in good agreement with that predicted from the molecular Debye interaction. The dipole character propagates to form aggregate chains. Using coarse-grained molecular dynamic simulations, we identify the separate roles of the D‒I attraction and the van der Waals attraction on aggregate formation. The D‒I attraction should be universal in a broad range of soft matter, such as colloids, polymers, clays, and biological materials, motivating researchers to further conduct in-depth research on these materials.

7.
Chem Sci ; 12(35): 11748-11755, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34659711

RESUMO

Nanosheets are important structures usually composed of inorganic materials, such as metals, metal oxides, and carbon. Their creation typically involves hydrothermal, electrochemical or microwave processes. In this study, we report a novel formation mechanism of 3D polymer nanosheets via facile solution casting using a comb copolymer consisting of poly(ethylene glycol) behenyl ether methacrylate and poly(oxyethylene) methacrylate (PEGBEM-POEM). Controlling the composition of comb copolymer yielded nanosheets with different packing density and surface coverage. Interestingly, the structure exhibits substrate independence as confirmed by glass, inorganic wafer, organic filter paper, and porous membrane. The formation of 3D nanosheets was investigated in detail using coarse-grained molecular dynamics simulations. The obtained polymer nanosheets were further utilized as templates for inorganic nanosheets, which exhibit high conductivity owing to interconnectivity, and hence have promising electronic and electrochemical applications.

8.
ACS Nano ; 15(9): 14492-14508, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34478266

RESUMO

Recent advances in supramolecular chemistry research have led to the development of artificial chemical systems that can form self-assembled structures that imitate proteins involved in the regulation of cellular function. However, intracellular polymerization systems that operate inside living cells have been seldom reported. In this study, we developed an intramitochondrial polymerization-induced self-assembly system for regulating the cellular fate of cancer cells. It showed that polymeric disulfide formation inside cells occurred due to the high reactive oxygen species (ROS) concentration of cancer mitochondria. This polymerization barely occurs elsewhere in the cell owing to the reductive intracellular environment. The polymerization of the thiol-containing monomers further increases the ROS level inside the mitochondria, thereby autocatalyzing the polymerization process and creating fibrous polymeric structures. This process induces dysfunction of the mitochondria, which in turn activates cell necroptosis. Thus, this in situ polymerization system shows great potential for cancer treatment, including that of drug-resistant cancers.


Assuntos
Dissulfetos , Neoplasias , Neoplasias/tratamento farmacológico , Polimerização
9.
Science ; 369(6511): 1615-1620, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32973026

RESUMO

Further improvement and stabilization of perovskite solar cell (PSC) performance are essential to achieve the commercial viability of next-generation photovoltaics. Considering the benefits of fluorination to conjugated materials for energy levels, hydrophobicity, and noncovalent interactions, two fluorinated isomeric analogs of the well-known hole-transporting material (HTM) Spiro-OMeTAD are developed and used as HTMs in PSCs. The structure-property relationship induced by constitutional isomerism is investigated through experimental, atomistic, and theoretical analyses, and the fabricated PSCs feature high efficiency up to 24.82% (certified at 24.64% with 0.3-volt voltage loss), along with long-term stability in wet conditions without encapsulation (87% efficiency retention after 500 hours). We also achieve an efficiency of 22.31% in the large-area cell.

10.
ACS Nano ; 13(10): 11022-11033, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31508938

RESUMO

Self-assembly of peptides containing both l- and d-isomers often results in nanostructures with enhanced properties compared to their enantiomeric analogues, such as faster kinetics of formation, higher mechanical strength, and enzymatic stability. However, occurrence and consequences of the heterochiral assembly in the cellular microenvironment are unknown. In this study, we monitored heterochiral assembly of amphiphilic peptides inside the cell, specifically mitochondria of cancer cells, resulting in nanostructures with refined morphological and biological properties owing to the superior interaction between the backbones of opposite chirality. We have designed a mitochondria penetrating tripeptide containing a diphenyl alanine building unit, named as Mito-FF due to their mitochondria targeting ability. The short peptide amphiphile, Mito-FF co-assembled with its mirror pair, Mito-ff, induced superfibrils of around 100 nm in diameter and 0.5-1 µm in length, while enantiomers formed only narrow fibers of 10 nm in diameter. The co-administration of Mito-FF and Mito-ff in the cell induced drastic mitochondrial disruption both in vitro and in vivo. The experimental and theoretical analyses revealed that pyrene capping played a major role in inducing superfibril morphology upon the co-assembly of racemic peptides. This work shows the impact of chirality control over the peptide self-assembly inside the biological system, thus showing a potent strategy for fabricating promising peptide biomaterials by considering chirality as a design modality.


Assuntos
Mitocôndrias/efeitos dos fármacos , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Células HT29 , Células HeLa , Humanos , Camundongos , Mitocôndrias/química , Nanoestruturas/uso terapêutico , Neoplasias/genética , Neoplasias/patologia , Peptídeos/química , Fenômenos Físicos , Estereoisomerismo , Tensoativos/química , Tensoativos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nat Commun ; 9(1): 4548, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382085

RESUMO

Targeted drug delivery using nanoparticles can minimize the side effects of conventional pharmaceutical agents and enhance their efficacy. However, translating nanoparticle-based agents into clinical applications still remains a challenge due to the difficulty in regulating interactions on the interfaces between nanoparticles and biological systems. Here, we present a targeting strategy for nanoparticles incorporated with a supramolecularly pre-coated recombinant fusion protein in which HER2-binding affibody combines with glutathione-S-transferase. Once thermodynamically stabilized in preferred orientations on the nanoparticles, the adsorbed fusion proteins as a corona minimize interactions with serum proteins to prevent the clearance of nanoparticles by macrophages, while ensuring systematic targeting functions in vitro and in vivo. This study provides insight into the use of the supramolecularly built protein corona shield as a targeting agent through regulating the interfaces between nanoparticles and biological systems.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Coroa de Proteína/química , Animais , Antineoplásicos/farmacologia , Proteínas Sanguíneas/química , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Ligação Proteica , Proteômica , Células RAW 264.7
12.
Nat Commun ; 8(1): 26, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28638095

RESUMO

Achieving spatiotemporal control of molecular self-assembly associated with actuation of biological functions inside living cells remains a challenge owing to the complexity of the cellular environments and the lack of characterization tools. We present, for the first time, the organelle-localized self-assembly of a peptide amphiphile as a powerful strategy for controlling cellular fate. A phenylalanine dipeptide (FF) with a mitochondria-targeting moiety, triphenyl phosphonium (Mito-FF), preferentially accumulates inside mitochondria and reaches the critical aggregation concentration to form a fibrous nanostructure, which is monitored by confocal laser scanning microscopy and transmission electron microscopy. The Mito-FF fibrils induce mitochondrial dysfunction via membrane disruption to cause apoptosis. The organelle-specific supramolecular system provides a new opportunity for therapeutics and in-depth investigations of cellular functions.Spatiotemporal control of intracellular molecular self-assembly holds promise for therapeutic applications. Here the authors develop a peptide consisting of a phenylalanine dipeptide with a mitochondrial targeting moiety to form self-assembling fibrous nanostructures within mitochondria, leading to apoptosis.


Assuntos
Morte Celular/fisiologia , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Animais , Apoptose , Linhagem Celular , Células HeLa , Humanos , Camundongos , Peptídeos/síntese química , Peptídeos/genética , Transporte Proteico , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa