Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2318333121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625949

RESUMO

Many nonequilibrium, active processes are observed at a coarse-grained level, where different microscopic configurations are projected onto the same observable state. Such "lumped" observables display memory, and in many cases, the irreversible character of the underlying microscopic dynamics becomes blurred, e.g., when the projection hides dissipative cycles. As a result, the observations appear less irreversible, and it is very challenging to infer the degree of broken time-reversal symmetry. Here we show, contrary to intuition, that by ignoring parts of the already coarse-grained state space we may-via a process called milestoning-improve entropy-production estimates. We present diverse examples where milestoning systematically renders observations "closer to underlying microscopic dynamics" and thereby improves thermodynamic inference from lumped data assuming a given range of memory, and we hypothesize that this effect is quite general. Moreover, whereas the correct general physical definition of time reversal in the presence of memory remains unknown, we here show by means of physically relevant examples that at least for semi-Markov processes of first and second order, waiting-time contributions arising from adopting a naive Markovian definition of time reversal generally must be discarded.

2.
Phys Rev Lett ; 133(6): 067101, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39178466

RESUMO

We prove that the transport of any differentiable scalar observable in d-dimensional nonequilibrium systems is bounded from above by the total entropy production scaled by the amount the observation "stretches" microscopic coordinates. The result-a time-integrated generalized speed limit-reflects the thermodynamic cost of transport of observables, and places underdamped and overdamped stochastic dynamics on equal footing with deterministic motion. Our work allows for stochastic thermodynamics to make contact with bulk experiments, and fills an important gap in thermodynamic inference, since microscopic dynamics is, at least for short times, underdamped. Requiring only averages but not sample-to-sample fluctuations, the proven transport bound is practical and applicable not only to single-molecule but also bulk experiments where only averages are observed, which we demonstrate by examples. Our results may facilitate thermodynamic inference on molecular machines without an obvious directionality from bulk observations of transients probed, e.g., in time-resolved x-ray scattering.

3.
Phys Rev Lett ; 132(14): 147101, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640391

RESUMO

Experiments often probe observables that correspond to low-dimensional projections of high-dimensional dynamics. In such situations distinct microscopic configurations become lumped into the same observable state. It is well known that correlations between the observable and the hidden degrees of freedom give rise to memory effects. However, how and under which conditions these correlations emerge remain poorly understood. Here we shed light on two fundamentally different scenarios of the emergence of memory in minimal stationary systems, where observed and hidden degrees of freedom either evolve cooperatively or are coupled by a hidden nonequilibrium current. In the reversible setting the strongest memory manifests when the timescales of hidden and observed dynamics overlap, whereas, strikingly, in the driven setting maximal memory emerges under a clear timescale separation. Our results hint at the possibility of fundamental differences in the way memory emerges in equilibrium versus driven systems that may be utilized as a "diagnostic" of the underlying hidden transport mechanism.

4.
Phys Rev Lett ; 130(8): 087101, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898097

RESUMO

Thermodynamic uncertainty relations (TURs) bound the dissipation in nonequilibrium systems from below by fluctuations of an observed current. Contrasting the elaborate techniques employed in existing proofs, we here prove TURs directly from the Langevin equation. This establishes the TUR as an inherent property of overdamped stochastic equations of motion. In addition, we extend the transient TUR to currents and densities with explicit time dependence. By including current-density correlations we, moreover, derive a new sharpened TUR for transient dynamics. Our arguably simplest and most direct proof, together with the new generalizations, allows us to systematically determine conditions under which the different TURs saturate and thus allows for a more accurate thermodynamic inference. Finally, we outline the direct proof also for Markov jump dynamics.

5.
Phys Rev Lett ; 131(23): 237101, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134782

RESUMO

We derive general bounds on the probability that the empirical first-passage time τ[over ¯]_{n}≡∑_{i=1}^{n}τ_{i}/n of a reversible ergodic Markov process inferred from a sample of n independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct nonasymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.

6.
Phys Rev Lett ; 128(22): 229901, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35714265

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.125.110602.

7.
Phys Rev Lett ; 129(14): 140601, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240401

RESUMO

We present general results on fluctuations and spatial correlations of the coarse-grained empirical density and current of Markovian diffusion in equilibrium or nonequilibrium steady states on all timescales. We unravel a deep connection between current fluctuations and generalized time-reversal symmetry, providing new insight into time-averaged observables. We highlight the essential role of coarse graining in space from mathematical, thermodynamical, and experimental points of view. Spatial coarse graining is required to uncover salient features of currents that break detailed balance, and a thermodynamically "optimal" coarse graining ensures the most precise inference of dissipation. Defined without coarse graining, the fluctuations of empirical density and current are proven to diverge on all timescales in dimensions higher than one, which has far-reaching consequences for the central-limit regime in continuous space. We apply the results to examples of irreversible diffusion. Our findings provide new intuition about time-averaged observables and allow for a more efficient analysis of single-molecule experiments.

8.
Phys Rev Lett ; 127(8): 080601, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477441

RESUMO

In a finite system driven out of equilibrium by a constant external force the thermodynamic uncertainty relation (TUR) bounds the variance of the conjugate current variable by the thermodynamic cost of maintaining the nonequilibrium stationary state. Here we highlight a new facet of the TUR by showing that it also bounds the timescale on which a finite system can exhibit anomalous kinetics. In particular, we demonstrate that the TUR bounds subdiffusion in a single file confined to a ring as well as a dragged Gaussian polymer chain even when detailed balance is satisfied. Conversely, the TUR bounds the onset of superdiffusion in the active comb model. Remarkably, the fluctuations in a comb model evolving from a steady state behave anomalously as soon as detailed balance is broken. Our work establishes a link between stochastic thermodynamics and the field of anomalous dynamics that will fertilize further investigations of thermodynamic consistency of anomalous diffusion models.

9.
Phys Rev Lett ; 125(11): 110602, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975999

RESUMO

We uncover an unforeseen asymmetry in relaxation: for a pair of thermodynamically equidistant temperature quenches, one from a lower and the other from a higher temperature, the relaxation at the ambient temperature is faster in the case of the former. We demonstrate this finding on hand of two exactly solvable many-body systems relevant in the context of single-molecule and tracer-particle dynamics. We prove that near stable minima and for all quadratic energy landscapes it is a general phenomenon that also exists in a class of non-Markovian observables probed in single-molecule and particle-tracking experiments. The asymmetry is a general feature of reversible overdamped diffusive systems with smooth single-well potentials and occurs in multiwell landscapes when quenches disturb predominantly intrawell equilibria. Our findings may be relevant for the optimization of stochastic heat engines.

10.
J Chem Phys ; 153(19): 194104, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33218229

RESUMO

We investigate memory effects in barrier-crossing in the overdamped setting. We focus on the scenario where the hidden degrees of freedom relax on exactly the same time scale as the observable. As a prototypical model, we analyze tagged-particle diffusion in a single file confined to a bi-stable potential. We identify the signatures of memory and explain their origin. The emerging memory is a result of the projection of collective many-body eigenmodes onto the motion of a tagged-particle. We are interested in the "confining" (all background particles in front of the tagged-particle) and "pushing" (all background particles behind the tagged-particle) scenarios for which we find non-trivial and qualitatively different relaxation behaviors. Notably and somewhat unexpectedly, at a fixed particle number, we find that the higher the barrier, the stronger the memory effects are. The fact that the external potential alters the memory is important more generally and should be taken into account in applications of generalized Langevin equations. Our results can readily be tested experimentally and may be relevant for understanding transport in biological ion-channels.

11.
Phys Chem Chem Phys ; 16(13): 6118-28, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24556939

RESUMO

Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick-Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda [J. Chem. Phys., 2012, 137, 024107].

12.
Phys Rev Lett ; 110(2): 020603, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383882

RESUMO

We study the ergodic properties of superdiffusive, spatiotemporally coupled Lévy walk processes. For trajectories of finite duration, we reveal a distinct scatter of the scaling exponents of the time averaged mean squared displacement δx2 around the ensemble value 3-α (1<α<2) ranging from ballistic motion to subdiffusion, in strong contrast to the behavior of subdiffusive processes. In addition we find a significant dependence of the average of δx2 over an ensemble of trajectories as a function of the finite measurement time. This so-called finite-time amplitude depression and the scatter of the scaling exponent is vital in the quantitative evaluation of superdiffusive processes. Comparing the long time average of the second moment with the ensemble mean squared displacement, these only differ by a constant factor, an ultraweak ergodicity breaking.


Assuntos
Modelos Teóricos , Movimento , Difusão , Fatores de Tempo
13.
Phys Rev Lett ; 111(12): 127801, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24093302

RESUMO

The interaction between two associating hydrophobic particles has traditionally been explained in terms of the release of entropically frustrated hydration shell water molecules. However, this picture cannot account for the kinetics of hydrophobic association and is therefore not capable of providing a microscopic description of the hydrophobic interaction (HI). Here, Monte Carlo simulations of a pair of molecular-scale apolar solutes in aqueous solution reveal the critical role of collective fluctuations in the hydrogen bond (HB) network for the microscopic picture of the HI. The main contribution to the HI is the relaxation of solute-water translational correlations. The existence of a heat capacity maximum at the desolvation barrier is shown to arise from softening of non-HB water fluctuations and the relaxation of many-body correlations in the labile HB network. The microscopic event governing the kinetics of hydrophobic association has turned out to be a relatively large critical collective fluctuation in hydration water displacing a substantial fraction of HB clusters from the inner to the outer region of the first hydration shell.


Assuntos
Modelos Químicos , Água/química , Simulação por Computador , Entropia , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Método de Monte Carlo , Soluções/química , Termodinâmica
14.
J Phys Chem Lett ; 14(1): 49-56, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36566432

RESUMO

We discuss some of the practical challenges that one faces in using stochastic thermodynamics to infer directionality of molecular machines from experimental single-molecule trajectories. Because of the limited spatiotemporal resolution of single-molecule experiments and because both forward and backward transitions between the same pairs of states cannot always be detected, differentiating between the forward and backward directions of, e.g., an ATP-consuming molecular machine that operates periodically, turns out to be a nontrivial task. Using a simple extension of a Markov-state model that is commonly employed to analyze single-molecule transition-path measurements, we illustrate how irreversibility can be hidden from such measurements but in some cases can be uncovered when non-Markov effects in low-dimensional single-molecule trajectories are considered.

15.
J Am Chem Soc ; 134(42): 17574-81, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23003674

RESUMO

The hydrophobic effect (HE) is commonly associated with the demixing of oil and water at ambient conditions and plays the leading role in determining the structure and stability of biomolecular assembly in aqueous solutions. On the molecular scale HE has an entropic origin. It is believed that hydrophobic particles induce order in the surrounding water by reducing the volume of configuration space available for hydrogen bonding. Here we show with computer simulation results that this traditional picture, based on average structural features of hydration water, configurational properties of single water molecules, and up to pairwise correlations, is not correct. Analyzing collective fluctuations in water clusters we are able to provide a fundamentally new picture of HE based on pronounced many-body correlations affecting the switching of hydrogen bonds (HBs) between molecules. These correlations emerge as a nonlocal compensation of reduced fluctuations of local electrostatic fields in the presence of an apolar solute. We propose an alternative view which may also be formulated as a maximization principle: The electrostatic noise acting on water molecules is maximized under the constraint that each water molecule on average maintains as many HBs as possible. In the presence of the solute the maximized electrostatic noise is a result of nonlocal fluctuations in the labile HB network giving rise to strong correlations among at least up to four water molecules.


Assuntos
Entropia , Água/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Eletricidade Estática
16.
Sci Adv ; 8(3): eabk0627, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061533

RESUMO

In nature and technology, particle dynamics frequently occur in complex environments, for example in restricted geometries or crowded media. These dynamics have often been modeled invoking a fractal structure of the medium although the fractal structure was only indirectly inferred through the dynamics. Moreover, systematic studies have not yet been performed. Here, colloidal particles moving in a laser speckle pattern are used as a model system. In this case, the experimental observations can be reliably traced to the fractal structure of the underlying medium with an adjustable fractal dimension. First-passage time statistics reveal that the particles explore the speckle in a self-similar, fractal manner at least over four decades in time and on length scales up to 20 times the particle radius. The requirements for fractal diffusion to be applicable are laid out, and methods to extract the fractal dimension are established.

17.
Chem Sci ; 13(33): 9668-9677, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091909

RESUMO

Internal motions of folded proteins have been assumed to be ergodic, i.e., that the dynamics of a single protein molecule averaged over a very long time resembles that of an ensemble. Here, by performing single-molecule fluorescence resonance energy transfer (smFRET) experiments and molecular dynamics (MD) simulations of a multi-domain globular protein, cytoplasmic protein-tyrosine phosphatase (SHP2), we demonstrate that the functional inter-domain motion is observationally non-ergodic over the time spans 10-12 to 10-7 s and 10-1 to 102 s. The difference between observational non-ergodicity and simple non-convergence is discussed. In comparison, a single-strand DNA of similar size behaves ergodically with an energy landscape resembling a one-dimensional linear chain. The observed non-ergodicity results from the hierarchical connectivity of the high-dimensional energy landscape of the protein molecule. As the characteristic time for the protein to conduct its dephosphorylation function is ∼10 s, our findings suggest that, due to the non-ergodicity, individual, seemingly identical protein molecules can be dynamically and functionally different.

18.
Phys Rev Lett ; 107(26): 267801, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22243182

RESUMO

Monte Carlo simulations of a small model solute in an aqueous solution are used to examine the effects of solute polarity on hydration structure. A judicious definition of the orientational order parameter leads to reinterpretation of the conventional picture of hydration. As the solute varies from hydrophobic to hydrophilic the ordered first shell water simultaneously fractionates into a more highly ordered and a more disordered component. The hydrogen-bond network rearranges such that the more ordered component relaxes to configurations of optimal intermolecular angles, the other fraction being released from the network.


Assuntos
Método de Monte Carlo , Água/química , Interações Hidrofóbicas e Hidrofílicas
19.
Phys Chem Chem Phys ; 13(33): 15311-7, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21792392

RESUMO

The ability to alter the rate at which molecules are released from pores by manipulating structural and surface properties of mesoporous materials was demonstrated consistently in numerous studies. Yet an understanding of the role of pore size, attraction to pore walls and of the release mechanism in general has still been elusive. Here we address these issues by means of a simple 2-dimensional (2D) model of ordered porous matrices with various pore sizes and strengths of molecule-wall attractions. The system dynamics are described with a 2D Fokker-Planck equation which is solved numerically for various cases of initial concentration distribution. We show that the interactions with walls play an essential and fundamental role in controlled release from mesoporous materials, regardless of whether they are additionally functionalized or not. They affect the relative cross-section where the local flux has a non-vanishing axial component and accordingly the effective transfer rate into bulk solution. Furthermore the inclusion of molecule-wall attractions into the theoretical description turns out to be the missing piece of the puzzle that explains the origin of the experimentally observed dependence of release kinetics on the pore size. Our results enable us to reinterpret existing experimental findings and provide a revised view of the mechanism of controlled release from ordered porous matrices.


Assuntos
Simulação de Dinâmica Molecular , Cinética , Porosidade , Propriedades de Superfície
20.
Phys Chem Chem Phys ; 13(35): 16046-54, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21826312

RESUMO

Compounds embedded into mesoporous or even microporous matrices are interesting for many emerging applications, such as novel catalysts, sensors, batteries, hydrogen storage materials or modern drug delivery devices. We report on two unexpected phenomena regarding the structural and dynamic properties of a model drug substance (indomethacin) when confined in mesoscopic matrices. Firstly, we show that the confinement directs the crystallization of the drug into a stable polymorph that is not otherwise formed at all; its relative amount depends on the pore size. This phenomenon is also explained theoretically using a modified classical heterogeneous nucleation theory. Secondly, we demonstrate that--even at relatively low volume fractions--the confined drug forms a condensed phase in a way that obstructs the passage of the pore channels. This may have far-reaching consequences for understanding the mechanisms of drug release from porous matrices.


Assuntos
Anti-Inflamatórios não Esteroides/química , Indometacina/química , Cristalização , Preparações de Ação Retardada/química , Modelos Moleculares , Porosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa