Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28113781

RESUMO

Protein-protein interactions (PPIs) play a vital role in the biological processes involved in the cell functions and disease pathways. The experimental methods known to predict PPIs require tremendous efforts and the results are often hindered by the presence of a large number of false positives. Herein, we demonstrate the use of a new Genetic Programming (GP) based Symbolic Regression (SR) approach for predicting PPIs related to a disease. In a case study, a dataset consisting of one hundred and thirty five PPI complexes related to cancer was used to construct a generic PPI predicting model with good PPI prediction accuracy and generalization ability. A high correlation coefficient(CC) of 0.893, low root mean square error (RMSE) and mean absolute percentage error (MAPE) values of 478.221 and 0.239, respectively were achieved for both the training and test set outputs. To validate the discriminatory nature of the model, it was applied on a dataset of diabetes complexes where it yielded significantly low CC values. Thus, the GP model developed here serves a dual purpose: (a)a predictor of the binding energy of cancer related PPI complexes, and (b)a classifier for discriminating PPI complexes related to cancer from those of other diseases.

2.
J Chromatogr A ; 1420: 98-109, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26460075

RESUMO

The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science.


Assuntos
Adamantano/química , Cromatografia Gasosa/instrumentação , Bases de Dados Factuais , Hidrocarbonetos/química , Redes Neurais de Computação , Dinâmica não Linear , Cromatografia Gasosa/métodos , Humanos , Modelos Lineares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa