Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 17 Suppl 2: 444, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27357693

RESUMO

BACKGROUND: Next generation sequencing (NGS) provides a key technology for deciphering the genetic underpinnings of human diseases. Typical NGS analyses of a patient depict tens of thousands non-reference coding variants, but only one or very few are expected to be significant for the relevant disorder. In a filtering stage, one employs family segregation, rarity in the population, predicted protein impact and evolutionary conservation as a means for shortening the variation list. However, narrowing down further towards culprit disease genes usually entails laborious seeking of gene-phenotype relationships, consulting numerous separate databases. Thus, a major challenge is to transition from the few hundred shortlisted genes to the most viable disease-causing candidates. RESULTS: We describe a novel tool, VarElect ( http://ve.genecards.org ), a comprehensive phenotype-dependent variant/gene prioritizer, based on the widely-used GeneCards, which helps rapidly identify causal mutations with extensive evidence. The GeneCards suite offers an effective and speedy alternative, whereby >120 gene-centric automatically-mined data sources are jointly available for the task. VarElect cashes on this wealth of information, as well as on GeneCards' powerful free-text Boolean search and scoring capabilities, proficiently matching variant-containing genes to submitted disease/symptom keywords. The tool also leverages the rich disease and pathway information of MalaCards, the human disease database, and PathCards, the unified pathway (SuperPaths) database, both within the GeneCards Suite. The VarElect algorithm infers direct as well as indirect links between genes and phenotypes, the latter benefitting from GeneCards' diverse gene-to-gene data links in GenesLikeMe. Finally, our tool offers an extensive gene-phenotype evidence portrayal ("MiniCards") and hyperlinks to the parent databases. CONCLUSIONS: We demonstrate that VarElect compares favorably with several often-used NGS phenotyping tools, thus providing a robust facility for ranking genes, pointing out their likelihood to be related to a patient's disease. VarElect's capacity to automatically process numerous NGS cases, either in stand-alone format or in VCF-analyzer mode (TGex and VarAnnot), is indispensable for emerging clinical projects that involve thousands of whole exome/genome NGS analyses.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Algoritmos , Mineração de Dados , Bases de Dados Genéticas , Genoma Humano , Humanos , Fenótipo
2.
Biomedicines ; 12(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927512

RESUMO

The GeneCaRNA human gene database is a member of the GeneCards Suite. It presents ~280,000 human non-coding RNA genes, identified algorithmically from ~690,000 RNAcentral transcripts. This expands by ~tenfold the ncRNA gene count relative to other sources. GeneCaRNA thus contains ~120,000 long non-coding RNAs (LncRNAs, >200 bases long), including ~100,000 novel genes. The latter have sparse functional information, a vast terra incognita for future research. LncRNA genes are uniformly represented on all nuclear chromosomes, with 10 genes on mitochondrial DNA. Data obtained from MalaCards, another GeneCards Suite member, finds 1547 genes associated with 1 to 50 diseases. About 15% of the associations portray experimental evidence, with cancers tending to be multigenic. Preliminary text mining within GeneCaRNA discovers interactions of lncRNA transcripts with target gene products, with 25% being ncRNAs and 75% proteins. GeneCaRNA has a biological pathways section, which at present shows 131 pathways for 38 lncRNA genes, a basis for future expansion. Finally, our GeneHancer database provides regulatory elements for ~110,000 lncRNA genes, offering pointers for co-regulated genes and genetic linkages from enhancers to diseases. We anticipate that the broad vista provided by GeneCaRNA will serve as an essential guide for further lncRNA research in disease decipherment.

3.
J Mol Biol ; 433(11): 166913, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33676929

RESUMO

Non-coding RNA (ncRNA) genes assume increasing biological importance, with growing associations with diseases. Many ncRNA sources are transcript-centric, but for non-coding variant analysis and disease decipherment it is essential to transform this information into a comprehensive set of genome-mapped ncRNA genes. We present GeneCaRNA, a new all-inclusive gene-centric ncRNA database within the GeneCards Suite. GeneCaRNA information is integrated from four community-backed data structures: the major transcript database RNAcentral with its 20 encompassed databases, and the ncRNA entries of three major gene resources HGNC, Ensembl and NCBI Gene. GeneCaRNA presents 219,587 ncRNA gene pages, a 7-fold increase from those available in our three gene mining sources. Each ncRNA gene has wide-ranging annotation, mined from >100 worldwide sources, providing a powerful GeneCards-leveraged search. The latter empowers VarElect, our disease-gene interpretation tool, allowing one to systematically decipher ncRNA variants. The combined power of GeneCaRNA with GeneHancer, our regulatory elements database, facilitates wide-ranging scrutiny of the non-coding terra incognita of gene networks and whole genome analyses.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genes , RNA não Traduzido/genética , Software , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos
4.
BMC Med Genomics ; 12(1): 200, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888639

RESUMO

BACKGROUND: The clinical genetics revolution ushers in great opportunities, accompanied by significant challenges. The fundamental mission in clinical genetics is to analyze genomes, and to identify the most relevant genetic variations underlying a patient's phenotypes and symptoms. The adoption of Whole Genome Sequencing requires novel capacities for interpretation of non-coding variants. RESULTS: We present TGex, the Translational Genomics expert, a novel genome variation analysis and interpretation platform, with remarkable exome analysis capacities and a pioneering approach of non-coding variants interpretation. TGex's main strength is combining state-of-the-art variant filtering with knowledge-driven analysis made possible by VarElect, our highly effective gene-phenotype interpretation tool. VarElect leverages the widely used GeneCards knowledgebase, which integrates information from > 150 automatically-mined data sources. Access to such a comprehensive data compendium also facilitates TGex's broad variant annotation, supporting evidence exploration, and decision making. TGex has an interactive, user-friendly, and easy adaptive interface, ACMG compliance, and an automated reporting system. Beyond comprehensive whole exome sequence capabilities, TGex encompasses innovative non-coding variants interpretation, towards the goal of maximal exploitation of whole genome sequence analyses in the clinical genetics practice. This is enabled by GeneCards' recently developed GeneHancer, a novel integrative and fully annotated database of human enhancers and promoters. Examining use-cases from a variety of TGex users world-wide, we demonstrate its high diagnostic yields (42% for single exome and 50% for trios in 1500 rare genetic disease cases) and critical actionable genetic findings. The platform's support for integration with EHR and LIMS through dedicated APIs facilitates automated retrieval of patient data for TGex's customizable reporting engine, establishing a rapid and cost-effective workflow for an entire range of clinical genetic testing, including rare disorders, cancer predisposition, tumor biopsies and health screening. CONCLUSIONS: TGex is an innovative tool for the annotation, analysis and prioritization of coding and non-coding genomic variants. It provides access to an extensive knowledgebase of genomic annotations, with intuitive and flexible configuration options, allows quick adaptation, and addresses various workflow requirements. It thus simplifies and accelerates variant interpretation in clinical genetics workflows, with remarkable diagnostic yield, as exemplified in the described use cases. TGex is available at http://tgex.genecards.org/.


Assuntos
Variação Genética , Genômica/métodos , Bases de Dados Genéticas , Frequência do Gene , Genótipo , Humanos , Anotação de Sequência Molecular , Fenótipo , Software , Interface Usuário-Computador , Fluxo de Trabalho
5.
Curr Protoc Bioinformatics ; 54: 1.30.1-1.30.33, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27322403

RESUMO

GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It automatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. VarElect's capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses. © 2016 by John Wiley & Sons, Inc.


Assuntos
Mineração de Dados/métodos , Bases de Dados Genéticas , Genômica/métodos , Análise de Sequência/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Proteoma , Software/normas
6.
OMICS ; 20(3): 139-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26983021

RESUMO

Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ ( geneanalytics.genecards.org ), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®--the human gene database; the MalaCards-the human diseases database; and the PathCards--the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®--the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene-tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell "cards" in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics, and others yet to emerge on the postgenomics horizon.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Análise em Microsséries/estatística & dados numéricos , Software , Algoritmos , Mineração de Dados , Bases de Dados Factuais , Bases de Dados Genéticas , Humanos , Redes e Vias Metabólicas/genética
7.
PLoS One ; 8(7): e66629, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874394

RESUMO

LifeMap Discovery™ provides investigators with an integrated database of embryonic development, stem cell biology and regenerative medicine. The hand-curated reconstruction of cell ontology with stem cell biology; including molecular, cellular, anatomical and disease-related information, provides efficient and easy-to-use, searchable research tools. The database collates in vivo and in vitro gene expression and guides translation from in vitro data to the clinical utility, and thus can be utilized as a powerful tool for research and discovery in stem cell biology, developmental biology, disease mechanisms and therapeutic discovery. LifeMap Discovery is freely available to academic nonprofit institutions at http://discovery.lifemapsc.com.


Assuntos
Desenvolvimento Embrionário , Medicina Regenerativa , Animais , Diferenciação Celular , Mineração de Dados , Expressão Gênica , Humanos , Biossíntese de Proteínas , Células-Tronco/citologia
8.
Database (Oxford) ; 2013: bat018, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23584832

RESUMO

Comprehensive disease classification, integration and annotation are crucial for biomedical discovery. At present, disease compilation is incomplete, heterogeneous and often lacking systematic inquiry mechanisms. We introduce MalaCards, an integrated database of human maladies and their annotations, modeled on the architecture and strategy of the GeneCards database of human genes. MalaCards mines and merges 44 data sources to generate a computerized card for each of 16 919 human diseases. Each MalaCard contains disease-specific prioritized annotations, as well as inter-disease connections, empowered by the GeneCards relational database, its searches and GeneDecks set analyses. First, we generate a disease list from 15 ranked sources, using disease-name unification heuristics. Next, we use four schemes to populate MalaCards sections: (i) directly interrogating disease resources, to establish integrated disease names, synonyms, summaries, drugs/therapeutics, clinical features, genetic tests and anatomical context; (ii) searching GeneCards for related publications, and for associated genes with corresponding relevance scores; (iii) analyzing disease-associated gene sets in GeneDecks to yield affiliated pathways, phenotypes, compounds and GO terms, sorted by a composite relevance score and presented with GeneCards links; and (iv) searching within MalaCards itself, e.g. for additional related diseases and anatomical context. The latter forms the basis for the construction of a disease network, based on shared MalaCards annotations, embodying associations based on etiology, clinical features and clinical conditions. This broadly disposed network has a power-law degree distribution, suggesting that this might be an inherent property of such networks. Work in progress includes hierarchical malady classification, ontological mapping and disease set analyses, striving to make MalaCards an even more effective tool for biomedical research. Database URL: http://www.malacards.org/


Assuntos
Bases de Dados Genéticas , Doença/genética , Anotação de Sequência Molecular , Mineração de Dados , Humanos , Internet
9.
Database (Oxford) ; 2010: baq020, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20689021

RESUMO

GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73,000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards' unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene's functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite. Database URL: www.genecards.org.


Assuntos
Bases de Dados Genéticas , Genoma Humano , Processamento Alternativo , Bases de Dados de Proteínas , Expressão Gênica , Redes Reguladoras de Genes , Doenças Genéticas Inatas/genética , Humanos , Internet , Mutação , Polimorfismo de Nucleotídeo Único , Mapeamento de Interação de Proteínas , Ferramenta de Busca
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa