Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Malar J ; 23(1): 32, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263087

RESUMO

BACKGROUND: Despite Ethiopia's concerted efforts to eliminate malaria by 2030, the disease continues to pose a significant public health and socioeconomic challenge in the country. The year 2021 witnessed 2.78 million malaria cases and 8041 associated deaths, emphasizing the persistent threat. Monitoring the prevalence trend of malaria is crucial for devising effective control and elimination strategies. This study aims to assess the trend of malaria prevalence at the Metehara Health Centre in the East Shoa Zone, Ethiopia. METHODS: A retrospective study, spanning from February to September 2023, utilized malaria registration laboratory logbooks at Metehara Health Centre to evaluate the prevalence of malaria from 2017/18 to 2022/23. Malaria and related data were collected using a pre-designed data collection sheet. Descriptive statistics were employed for data summarization, presented through graphs and tables. RESULTS: Out of 59,250 examined blood films, 17.4% confirmed the presence of Plasmodium infections. Among the confirmed cases, 74.3%, 23.8%, and 1.84% were attributed to Plasmodium falciparum, Plasmodium vivax, and mixed infections, respectively. The trend of malaria exhibited a steady decline from 2017/18 to 2021/22, reaching 9.8% prevalence. However, an abrupt increase to 26.5% was observed in 2022/23. Males accounted for a higher proportion (66%) of cases compared to females (34%). The age group 15-24 years experienced the highest malaria incidence at 42%. Notably, malaria cases peaked during autumn (September to November) at 43% and reached the lowest percentage during spring (March to May) at 13%. CONCLUSION: Malaria persists as a significant health challenge in and around Metehara, central Ethiopia, predominantly driven by Plasmodium falciparum. The five-year declining trend was interrupted by a notable upsurge in 2022/23, indicating a resurgence of malaria in the study area. It is imperative to adopt a reverse strategy to sustain the progress achieved by the national malaria control plan.


Assuntos
Objetivos , Malária , Feminino , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Etiópia , Estudos Retrospectivos , Instalações de Saúde , Plasmodium falciparum
2.
Malar J ; 23(1): 55, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395885

RESUMO

BACKGROUND: Plasmodium vivax Duffy binding protein (PvDBP) is a merozoite surface protein located in the micronemes of P. vivax. The invasion of human reticulocytes by P. vivax merozoites depends on the parasite DBP binding domain engaging Duffy Antigen Receptor for Chemokine (DARC) on these red blood cells (RBCs). PvDBPII shows high genetic diversity which is a major challenge to its use in the development of a vaccine against vivax malaria. METHODS: A cross-sectional study was conducted from February 2021 to September 2022 in five study sites across Ethiopia. A total of 58 blood samples confirmed positive for P. vivax by polymerase chain reaction (PCR) were included in the study to determine PvDBPII genetic diversity. PvDBPII were amplified using primers designed from reference sequence of P. vivax Sal I strain. Assembling of sequences was done using Geneious Prime version 2023.2.1. Alignment and phylogenetic tree constructions using MEGA version 10.1.1. Nucleotide diversity and haplotype diversity were analysed using DnaSP version 6.12.03, and haplotype network was generated with PopART version 1.7. RESULTS: The mean age of the participants was 25 years, 5 (8.6%) participants were Duffy negatives. From the 58 PvDBPII sequences, seven haplotypes based on nucleotide differences at 8 positions were identified. Nucleotide diversity and haplotype diversity were 0.00267 ± 0.00023 and 0.731 ± 0.036, respectively. Among the five study sites, the highest numbers of haplotypes were identified in Arbaminch with six different haplotypes while only two haplotypes were identified in Gambella. The phylogenetic tree based on PvDBPII revealed that parasites of different study sites shared similar genetic clusters with few exceptions. Globally, a total of 39 haplotypes were identified from 223 PvDBPII sequences representing different geographical isolates obtained from NCBI archive. The nucleotide and haplotype diversity were 0.00373 and 0.845 ± 0.015, respectively. The haplotype prevalence ranged from 0.45% to 27.3%. Two haplotypes were shared among isolates from all geographical areas of the globe. CONCLUSIONS: PvDBPII of the Ethiopian P. vivax isolates showed low nucleotide but high haplotype diversity, this pattern of genetic variability suggests that the population may have undergone a recent expansion. Among the Ethiopian P. vivax isolates, almost half of the sequences were identical to the Sal-I reference sequence. However, there were unique haplotypes observed in the Ethiopian isolates, which does not share with isolates from other geographical areas. There were two haplotypes that were common among populations across the globe. Categorizing population haplotype frequency can help to determine common haplotypes for designing an effective blood-stage vaccine which will have a significant role for the control and elimination of P. vivax.


Assuntos
Malária Vivax , Vacinas , Humanos , Adulto , Plasmodium vivax , Filogenia , Etiópia/epidemiologia , Estudos Transversais , Seleção Genética , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/genética , Malária Vivax/parasitologia , Haplótipos , Nucleotídeos , Variação Genética
3.
Malar J ; 23(1): 108, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632640

RESUMO

BACKGROUND: Rapid diagnostic tests (RDTs) play a significant role in expanding case management in peripheral healthcare systems. Histidine-rich protein-2 (HRP2) antigen detection RDTs are predominantly used to diagnose Plasmodium falciparum infection. However, the evolution and spread of P. falciparum parasite strains with deleted hrp2/3 genes, causing false-negative results, have been reported. This study assessed the diagnostic performance of HRP2-detecting RDTs for P. falciparum cases and the prevalence of pfhrp2/3 deletions among symptomatic patients seeking malaria diagnosis at selected health facilities in southern Ethiopia. METHODS: A multi-health facilities-based cross-sectional study was conducted on self-presenting febrile patients seeking treatment in southern Ethiopia from July to September 2022. A purposive sampling strategy was used to enroll patients with microscopically confirmed P. falciparum infections. A capillary blood sample was obtained to prepare a blood film for microscopy and a RDT using the SD Bioline™ Malaria Pf/Pv Test. Dried blood spot samples were collected for further molecular analysis. DNA was extracted using gene aid kits and amplification was performed using nested PCR assay. Exon 2 of hrp2 and hrp3, which are the main protein-coding regions, was used to confirm its deletion. The diagnostic performance of RDT was evaluated using PCR as the gold standard test for P. falciparum infections. RESULTS: Of 279 P. falciparum PCR-confirmed samples, 249 (89.2%) had successful msp-2 amplification, which was then genotyped for hrp2/3 gene deletions. The study revealed that pfhrp2/3 deletions were common in all health centres, and it was estimated that 144 patients (57.8%) across all health facilities had pfhrp2/3 deletions, leading to false-negative PfHRP2 RDT results. Deletions spanning exon 2 of hrp2, exon 2 of hrp3, and double deletions (hrp2/3) accounted for 68 (27.3%), 76 (30.5%), and 33 (13.2%) of cases, respectively. The study findings revealed the prevalence of P. falciparum parasites lacking a single pfhrp2-/3-gene and that both genes varied across the study sites. This study also showed that the sensitivity of the SD Bioline PfHRP2-RDT test was 76.5% when PCR was used as the reference test. CONCLUSION: This study confirmed the existence of widespread pfhrp2/3- gene deletions, and their magnitude exceeded the WHO-recommended threshold (> 5%). False-negative RDT results resulting from deletions in Pfhrp2/3- affect a country's attempts at malaria control and elimination. Therefore, the adoption of non-HRP2-based RDTs as an alternative measure is required to avoid the consequences associated with the continued use of HRP-2-based RDTs, in the study area in particular and in Ethiopia in general.


Assuntos
Malária Falciparum , Proteínas de Protozoários , Humanos , Antígenos de Protozoários/genética , Estudos Transversais , Testes Diagnósticos de Rotina/métodos , Etiópia/epidemiologia , Deleção de Genes , Histidina/genética , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
4.
Malar J ; 23(1): 262, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210318

RESUMO

BACKGROUND: Rapid diagnostic tests (RDTs) provide quick, easy, and convenient early diagnosis of malaria ensuring better case management particularly in resource-constrained settings. Nevertheless, the efficiency of HRP2-based RDT can be compromised by Plasmodium falciparum histidine-rich protein 2/3 gene deletion and genetic diversity. This study explored the genetic diversity of PfHRP2/3 in uncomplicated malaria cases from Ethiopia. METHODS: A cross-sectional study was conducted from June 2022 to March 2023 at Metehara, Zenzelema and Kolla Shele health centres, Ethiopia. Finger-prick blood samples were collected for RDT testing and microscopic examination. For molecular analysis, parasite genomic DNA was extracted from venous blood. Plasmodium falciparum was confirmed using VarATS real time PCR. Additionally, PfHRP2/3 was amplified, and DNA amplicons were sequenced using Oxford Nanopore technology. RESULTS: PfHRP2/3 sequences revealed small variations in the frequency and number of amino acid repeat types per isolate across the three health centres. Twelve and eight types of amino acid repeats were identified for PfHRP2 and PfHRP3, respectively, which had been previously characterized. Repeat type 1, 4 and 7 were present in both PfHRP2 and PfHRP3 amino acid sequences. Type 2 and 7 repeats were commonly dispersed in PfHRP2, while repeat types 16 and 17 were found only in PfHRP3. A novel 17 V repeat type variant, which has never been reported in Ethiopia, was identified in six PfHRP3 amino acid sequences. The majority of the isolates, as determined by the Baker's logistic regression model, belonged to group C, of which 86% of them were sensitive to PfHRP2-based RDT. Likewise, PfHRP2-based RDT detected 100% of the isolates in group A (product of type 2 × type 7 repeats ≥ 100) and 85.7% in group B (product of types 2 × type 7 repeats 50-99) at a parasitaemia level > 250 parasite/µl. CONCLUSION: This study highlights the significant diversity observed in PfHRP2 and PfHRP3 among clinical isolates of Plasmodium falciparum in Ethiopia. This emphasizes the necessity for monitoring of PfHRP2- based RDT efficacy and their repeat type distribution using a large sample size and isolates from various ecological settings.


Assuntos
Antígenos de Protozoários , Testes Diagnósticos de Rotina , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Etiópia , Proteínas de Protozoários/genética , Antígenos de Protozoários/genética , Estudos Transversais , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Humanos , Adulto , Feminino , Adulto Jovem , Adolescente , Masculino , Pessoa de Meia-Idade , Criança , Pré-Escolar , Variação Genética , Lactente
5.
Malar J ; 23(1): 282, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289715

RESUMO

BACKGROUND: Artemether-lumefantrine (AL) has been the primary anti-malarial drug used to treat uncomplicated Plasmodium falciparum malaria in Ethiopia since 2004. However, there have been recent reports of AL resistance mutations in different African countries, including Ethiopia. This is concerning and requires periodic monitoring of anti-malarial drug resistance. Therefore, the current study aimed to evaluate the therapeutic efficacy of AL in treating uncomplicated P. falciparum malaria in the Arba Minch Zuria District, Gamo Zone, Southwest Ethiopia. METHODS: A single-arm prospective study with a 28-day follow-up period was conducted from July to October 2022. Capillary blood samples were collected for RDT and microscopic examination. The study enrolled monoinfected P. falciparum patients aged ≥ 18 years at Ganta Sira Health Post. Sociodemographic and clinical data were recorded, and a dried blood spot (DBS) was prepared for each participant. Nested polymerase chain reaction (nPCR) genotyping of the msp-1 and msp-2 genes was only performed for recurrent cases to distinguish between recurrence and reinfection. Data entry and analysis were performed using the WHO Excel spreadsheet and SPSS version 26. RESULTS: A total of 89 patients were enrolled, and 67 adequately completed the 28-day follow-up period. AL showed a 100% clearance rate for fever on day 2 and asexual parasites on day 3. Gametocytes were detected in 13.5% (12/89) of the participants. The gametocyte clearance rate was 58.3% (7/12) until day 7 and 100% (12/12) until day 14. Five participants developed recurrent malaria, three of whom experienced relapse and two of whom experienced reinfection. Based on the Kaplan-Meier survival analysis, the PCR-uncorrected and PCR-corrected cumulative incidence of success were 93.7% (95% CI 85.5-97.3) and 96.2% (95% CI 85.5-98.7), respectively. CONCLUSION: AL was efficacious in treating uncomplicated P. falciparum malaria in the study area. However, the detection of recurrent patients highlights the need for continuous efficacy studies in this area.


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Malária Falciparum , Plasmodium falciparum , Combinação Arteméter e Lumefantrina/uso terapêutico , Etiópia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Humanos , Masculino , Antimaláricos/uso terapêutico , Feminino , Adulto , Adulto Jovem , Adolescente , Estudos Prospectivos , Pessoa de Meia-Idade , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Idoso , Proteína 1 de Superfície de Merozoito/genética , Antígenos de Protozoários/genética , Proteínas de Protozoários/genética
6.
Malar J ; 22(1): 311, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845680

RESUMO

BACKGROUND: Schoolchildren with asymptomatic malaria infections often go undiagnosed and untreated, serving as reservoirs for infection that hamper malaria control and elimination efforts. In this context, little is known about the magnitude of asymptomatic malaria infections in apparently healthy schoolchildren in Ethiopia. This study was aimed at determining the prevalence of asymptomatic malaria infection and its associated factors in apparently healthy schoolchildren in Ethiopia. METHODS: From September 2021 to January 2022, a school-based cross-sectional study was conducted on 994 apparently healthy schoolchildren (aged 6-15 years) selected from 21 primary schools in the Gomma district, of Jimma zone, southwestern Oromia, Ethiopia. A multi-stage sampling technique was used to select schools and participants. After allocating the total sample proportionally to each school and then to each grade, participants were selected using the lottery method from a list of student records (rosters). Finger-pricked blood samples were collected for microscopy blood film preparation and malaria rapid diagnostic test (RDT) (SD Bioline Malaria Ag Pf/Pv). Moreover, dry blood spots (DBSs) were prepared onto filter papers for quantitative real time polymerase chain reaction (qPCR) analysis. RESULTS: As determined by RDT and microscopy, the prevalence of asymptomatic malaria was 2.20% and 1.51%, respectively. Using qPCR, the overall prevalence was 5.03% (50/994). Of this, Plasmodium falciparum, Plasmodium vivax and mixed infections accounted for 90%, 6% and 4%, respectively. Submicroscopic asymptomatic malaria infection was also accounted for 70% (35/50) of the overall prevalence. Household head age, nighttime outdoor activities of household heads, family history of malaria, absence of insecticide-treated nets (ITN), and presence of stagnant water around the houses are all significantly associated with asymptomatic malaria infections among schoolchildren. CONCLUSIONS: This study found that both RDT and microscopy underestimated the prevalence of asymptomatic malaria in schoolchildren. However, qPCR was able to detect even low levels of parasitaemia and revealed a higher prevalence of asymptomatic submicroscopic malaria infections. The findings imply that schoolchildren with asymptomatic malaria infection are potential hotspot for malaria reservoir that fuels ongoing transmission. Therefore, it is imperative to include schoolchildren and schools in malaria intervention package and equally important is the adoption of more advanced and sensitive diagnostic tools, which would be crucial for successful malaria control and elimination efforts. Targeted interventions for asymptomatic malaria-infected schoolchildren can provide invaluable support to the National Malaria Control Programme in controlling and eventually eliminating the disease.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Criança , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Malária Vivax/diagnóstico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/diagnóstico , Etiópia/epidemiologia , Estudos Transversais , Malária/epidemiologia , Malária/prevenção & controle , Plasmodium falciparum , Infecções Assintomáticas/epidemiologia , Prevalência
7.
Malar J ; 22(1): 136, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098534

RESUMO

BACKGROUND: Measuring risk of malaria transmission is complex, especially in case of Plasmodium vivax. This may be overcome using membrane feeding assays in the field where P. vivax is endemic. However, mosquito-feeding assays are affected by a number of human, parasite and mosquito factors. Here, this study identified the contributions of Duffy blood group status of P. vivax-infected patients as a risk of parasite transmission to mosquitoes. METHODS: A membrane feeding assay was conducted on a total of 44 conveniently recruited P. vivax infected patients in Adama city and its surroundings in East Shewa Zone, Oromia region, Ethiopia from October, 2019 to January, 2021. The assay was performed in Adama City administration. Mosquito infection rates were determined by midgut dissections at seven to 8 days post-infection. Duffy genotyping was defined for each of the 44 P. vivax infected patients. RESULTS: The infection rate of Anopheles mosquitoes was 32.6% (296/907) with 77.3% proportion of infectious participants (34/44). Infectiousness of participants to Anopheles mosquitoes appeared to be higher among individuals with homozygous Duffy positive blood group (TCT/TCT) than heterozygous (TCT/CCT), but the difference was not statistically significant. The mean oocyst density was significantly higher among mosquitoes fed on blood of participants with FY*B/FY*BES than other genotypes (P = 0.001). CONCLUSION: Duffy antigen polymorphisms appears to contribute to transmissibility difference of P. vivax gametocytes to Anopheles mosquitoes, but further studies are required.


Assuntos
Anopheles , Antígenos de Grupos Sanguíneos , Malária Vivax , Animais , Humanos , Plasmodium vivax/genética , Anopheles/parasitologia , Malária Vivax/epidemiologia , Genótipo
8.
Malar J ; 22(1): 201, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393257

RESUMO

BACKGROUND: Plasmodium vivax malaria is now recognized as a cause of severe morbidity and mortality, resulting in a substantial negative effect on health especially in endemic countries. Accurate and prompt diagnosis and treatment of P. vivax malaria is vital for the control and elimination of the disease. METHODS: A cross-sectional study was conducted from February 2021 to September 2022 at five malaria endemic sites in Ethiopia including Aribaminch, Shewarobit, Metehara, Gambella, and Dubti. A total of 365 samples that were diagnosed positive for P. vivax (mono and mixed infection) using RDT, site level microscopists and expert microscopists were selected for PCR. Statistical analyses were performed to calculate the proportions, agreement (k), frequencies, and ranges among different diagnostic methods. Fisher's exact tests and correlation test were used to detect associations and relationship between different variables. RESULTS: Of the 365 samples, 324 (88.8%), 37(10.1%), 2 (0.5%), and 2 (0.5%) were P. vivax (mono), P. vivax/Plasmodium falciparum (mixed), P. falciparum (mono) and negative by PCR, respectively. The overall agreement of rapid diagnostic test (RDT), site level microscopy and expert microscopists result with PCR was 90.41% (k: 0.49), 90.96% (k: 0.53), and 80.27% (k: 0.24). The overall prevalence of sexual (gametocyte) stage P. vivax in the study population was 215/361 (59.6%). The majority of these 215 samples (180; 83.7%) had below 1000 parasites/µl, with only four samples (1.9%) had ≥ 5000 parasites/µl. The gametocyte density was found to be weakly positive but statically significant with asexual parasitaemia (r = 0.31; p < 0.001). CONCLUSION: Both microscopy and RDT showed moderate agreement with PCR in the detection and identification of P. vivax (mono) and P. vivax/P. falciparum (mixed) infections. Therefore, to achieve malaria elimination goals, strengthening routine malaria diagnostic methods by implementing diagnostic tools with a good performance in detecting and accurately identifying malaria species in clinical settings is recommended.


Assuntos
Coinfecção , Malária Falciparum , Malária Vivax , Malária , Humanos , Malária Vivax/diagnóstico , Malária Vivax/epidemiologia , Plasmodium vivax/genética , Etiópia/epidemiologia , Estudos Transversais , Microscopia , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Reação em Cadeia da Polimerase
9.
Malar J ; 22(1): 112, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991438

RESUMO

BACKGROUND: One of the major roadblocks to the falciparum malaria elimination programme is the presence of a portion of the population, such as school children, with asymptomatic malaria infection. Targeting such reservoirs of infections is critical to interrupting transmission and enhancing elimination efforts. The NxTek™ Eliminate Malaria Pf test is a highly sensitive rapid diagnostic test (hsRDT) for the detection of HRP-2. However, knowledge gaps exist in Ethiopia on the diagnostic performance of hsRDT for the detection of Plasmodium falciparum in school children with asymptomatic malaria. METHODS: A school-based cross-sectional study was conducted from September 2021 to January 2022 on 994 healthy school children (aged 6-15 years). Finger-pricked whole blood samples were collected for microscopy, hsRDT, conventional RDT (cRDT or SD Bioline Malaria Ag Pf/P.v), and QuantStudio™ 3 Real-Time PCR system (qPCR). The hsRDT was compared to cRDT and microscopy. qPCR and microscopy were used as reference methods. RESULTS: The prevalence of Plasmodium falciparum was 1.51%, 2.2%. 2.2% and 4.52%, by microscopy, hsRDT, cRDT and qPCR, respectively. Using qPCR as reference, the sensitivity of hsRDT was higher (48.89%) than the microscopy (33.3%), and showed 100% specificity and a positive predictive value (PPV). Microscopy showed similar specificity and PPV as hsRDT. Using microscopy as a reference, the diagnostic perforrmances of both hsRDT and cRDT were similar. Both RDTs demonstrated identical diagnostic performances in both comparison methods. CONCLUSIONS: hsRDT has the same diagnostic performance as cRDT but improved diagnostic characteristics than microscopy for detection of P. falciparum in school children with asymptomatic malaria. It can be a useful tool for the national malaria elimination plan of Ethiopia.


Assuntos
Malária Falciparum , Malária , Humanos , Criança , Plasmodium falciparum/genética , Estudos Transversais , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções Assintomáticas , Testes Diagnósticos de Rotina/métodos , Sensibilidade e Especificidade
10.
Malar J ; 22(1): 48, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759908

RESUMO

BACKGROUND: Malaria, transmitted by the bite of infective female Anopheles mosquitoes, remains a global public health problem. The presence of an invasive Anopheles stephensi, capable of transmitting Plasmodium vivax and Plasmodium falciparum parasites was first reported in Ethiopia in 2016. The ecology of An. stephensi is different from that of Anopheles arabiensis, the primary Ethiopian malaria vector, and this suggests that alternative control strategies may be necessary. Larviciding may be an effective alternative strategy, but there is limited information on the susceptibility of Ethiopian An. stephensi to common larvicides. This study aimed to evaluate the efficacy of temephos and Bacillus thuringiensis var. israelensis (Bti) larvicides against larvae of invasive An. stephensi. METHODS: The diagnostic doses of two larvicides, temephos (0.25 ml/l) and Bti (0.05 mg/l) were tested in the laboratory against the immature stages (late third to early fourth stages larvae) of An. stephensi collected from the field and reared in a bio-secure insectary. Larvae were collected from two sites (Haro Adi and Awash Subuh Kilo). For each site, three hundred larvae were tested against each insecticide (as well as an untreated control), in batches of 25. The data from all replicates were pooled and descriptive statistics prepared. RESULTS: The mortality of larvae exposed to temephos was 100% for both sites. Mortality to Bti was 99.7% at Awash and 100% at Haro Adi site. CONCLUSIONS: Larvae of An. stephensi are susceptible to temephos and Bti larvicides suggesting that larviciding with these insecticides through vector control programmes may be effective against An. stephensi in these localities.


Assuntos
Anopheles , Bacillus thuringiensis , Inseticidas , Malária , Animais , Feminino , Humanos , Temefós/farmacologia , Larva , Etiópia , Mosquitos Vetores , Inseticidas/farmacologia
11.
Malar J ; 22(1): 218, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501142

RESUMO

BACKGROUND: Malaria, transmitted by the bite of infective female Anopheles mosquitoes, remains a global public health problem. The presence of invasive Anopheles stephensi, capable of transmitting Plasmodium vivax and Plasmodium falciparum, was first reported in Ethiopia in 2016. The ecology of this mosquito species differs from that of Anopheles arabiensis, the primary malaria vector in Ethiopia. This study aimed to evaluate the efficacy of selected insecticides, which are used in indoor residual spraying (IRS) and selected long-lasting insecticidal nets (LLINs) for malaria vector control against adult An. stephensi. METHODS: Anopheles stephensi mosquitoes were collected as larvae and pupae from Awash Subah Kilo Town and Haro Adi village, Ethiopia. Adult female An. stephensi, reared from larvae and pupae collected from the field, aged 3-5 days were exposed to impregnated papers of IRS insecticides (propoxur 0.1%, bendiocarb 0.1%, pirimiphos-methyl 0.25%), and insecticides used in LLINs (alpha-cypermethrin 0.05%, deltamethrin 0.05% and permethrin 0.75%), using diagnostic doses and WHO test tubes in a bio-secure insectary at Aklilu Lemma Institute of Pathobiology, Addis Ababa University. For each test and control tube, batches of 25 female An. stephensi were used to test each insecticide used in IRS. Additionally, cone bioassay tests were conducted to expose An. stephensi from the reared population to four brands of LLINs, MAGNet™ (alpha-cypermethrin), PermaNet® 2.0 (deltamethrin), DuraNet© (alpha-cypermethrin) and SafeNet® (alpha-cypermethrin). A batch of ten sugar-fed female mosquitoes aged 2-5 days was exposed to samples taken from five positions/sides of a net. The data from all replicates were pooled and descriptive statistics were used to describe features of the data. RESULTS: All An. stephensi collected from Awash Subah Kilo Town and Haro Adi village (around Metehara) were resistant to all tested insecticides used in both IRS and LLINs. Of the tested LLINs, only MAGNet™ (alpha-cypermethrin active ingredient) caused 100% knockdown and mortality to An. stephensi at 60 min and 24 h post exposure, while all other net brands caused mortality below the WHO cut-off points (< 90%). All these nets, except SafeNet®, were collected during LLIN distribution for community members through the National Malaria Programme, in December 2020. CONCLUSIONS: Anopheles stephensi is resistant to all tested insecticides used in IRS and in the tested LLIN brands did not cause mosquito mortality as expected, except MAGNet. This suggests that control of this invasive vector using existing adult malaria vector control methods will likely be inadequate and that alternative strategies may be necessary.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Humanos , Adulto , Animais , Feminino , Inseticidas/farmacologia , Etiópia , Controle de Mosquitos/métodos , Mosquitos Vetores , Malária/epidemiologia , Resistência a Inseticidas
12.
Malar J ; 22(1): 171, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270589

RESUMO

BACKGROUND: Pfcrt gene has been associated with chloroquine resistance and the pfmdr1 gene can alter malaria parasite susceptibility to lumefantrine, mefloquine, and chloroquine. In the absence of chloroquine (CQ) and extensive use of artemether-lumefantrine (AL) from 2004 to 2020 to treat uncomplicated falciparum malaria, pfcrt haplotype, and pfmdr1 single nucleotide polymorphisms (SNPs) were determined in two sites of West Ethiopia with a gradient of malaria transmission. METHODS: 230 microscopically confirmed P. falciparum isolates were collected from Assosa (high transmission area) and Gida Ayana (low transmission area) sites, of which 225 of them tested positive by PCR. High-Resolution Melting Assay (HRM) was used to determine the prevalence of pfcrt haplotypes and pfmdr1 SNPs. Furthermore, the pfmdr1 gene copy number (CNV) was determined using real-time PCR. A P-value of less or equal to 0.05 was considered significant. RESULTS: Of the 225 samples, 95.5%, 94.4%, 86.7%, 91.1%, and 94.2% were successfully genotyped with HRM for pfcrt haplotype, pfmdr1-86, pfmdr1-184, pfmdr1-1042 and pfmdr1-1246, respectively. The mutant pfcrt haplotypes were detected among 33.5% (52/155) and 80% (48/60) of isolates collected from the Assosa and Gida Ayana sites, respectively. Plasmodium falciparum with chloroquine-resistant haplotypes was more prevalent in the Gida Ayana area compared with the Assosa area (COR = 8.4, P = 0.00). Pfmdr1-N86Y wild type and 184F mutations were found in 79.8% (166/208) and 73.4% (146/199) samples, respectively. No single mutation was observed at the pfmdr1-1042 locus; however, 89.6% (190/212) of parasites in West Ethiopia carry the wild-type D1246Y variants. Eight pfmdr1 haplotypes at codons N86Y-Y184F-D1246Y were identified with the dominant NFD 61% (122/200). There was no difference in the distribution of pfmdr1 SNPs, haplotypes, and CNV between the two study sites (P > 0.05). CONCLUSION: Plasmodium falciparum with the pfcrt wild-type haplotype was prevalent in high malaria transmission site than in low transmission area. The NFD haplotype was the predominant haplotype of the N86Y-Y184F-D1246Y. A continuous investigation is needed to closely monitor the changes in the pfmdr1 SNPs, which are associated with the selection of parasite populations by ACT.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Etiópia/epidemiologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemeter/uso terapêutico , Malária Falciparum/parasitologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Malária/tratamento farmacológico , Lumefantrina/uso terapêutico , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Resistência a Medicamentos/genética
13.
Malar J ; 22(1): 235, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580690

RESUMO

BACKGROUND: Urbanization generally improves health outcomes of residents and is one of the potential factors that might contribute to reducing malaria transmission. However, the expansion of Anopheles stephensi, an urban malaria vector, poses a threat for malaria control and elimination efforts in Africa. In this paper, malaria trends in urban settings in Ethiopia from 2014 to 2019 are reported with a focus on towns and cities where An. stephensi surveys were conducted. METHODS: A retrospective study was conducted to determine malaria trends in urban districts using passive surveillance data collected at health facilities from 2014 to 2019. Data from 25 towns surveyed for An. stephensi were used in malaria trend analysis. Robust linear models were used to identify outliers and impute missing and anomalous data. The seasonal Mann-Kendal test was used to test for monotonic increasing or decreasing trends. RESULTS: A total of 9,468,970 malaria cases were reported between 2014 and 2019 through the Public Health Emergency Management (PHEM) system. Of these, 1.45 million (15.3%) cases were reported from urban settings. The incidence of malaria declined by 62% between 2014 and 2018. In 2019, the incidence increased to 15 per 1000 population from 11 to 1000 in 2018. Both confirmed (microscopy or RDT) Plasmodium falciparum (67%) and Plasmodium vivax (28%) were reported with a higher proportion of P. vivax infections in urban areas. In 2019, An. stephensi was detected in 17 towns where more than 19,804 malaria cases were reported, with most of the cases (56%) being P. falciparum. Trend analysis revealed that malaria cases increased in five towns in Afar and Somali administrative regions, decreased in nine towns, and had no obvious trend in the remaining three towns. CONCLUSION: The contribution of malaria in urban settings is not negligible in Ethiopia. With the rapid expansion of An. stephensi in the country, the receptivity is likely to be higher for malaria. Although the evidence presented in this study does not demonstrate a direct linkage between An. stephensi detection and an increase in urban malaria throughout the country, An. stephensi might contribute to an increase in malaria unless control measures are implemented as soon as possible. Targeted surveillance and effective response are needed to assess the contribution of this vector to malaria transmission and curb potential outbreaks.


Assuntos
Anopheles , Malária Falciparum , Malária Vivax , Malária , Animais , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Malária/diagnóstico , Etiópia/epidemiologia , Anopheles/fisiologia , Estudos Retrospectivos , Mosquitos Vetores , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia
14.
Malar J ; 22(1): 376, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087335

RESUMO

BACKGROUND: Plasmodium falciparum genetic diversity can add information on transmission intensity and can be used to track control and elimination interventions. METHODS: Dried blood spots (DBS) were collected from patients who were recruited for a P. falciparum malaria therapeutic efficacy trial in three malaria endemic sites in Ethiopia from October to December 2015, and November to December 2019. qPCR-confirmed infections were subject to amplicon sequencing of polymorphic markers ama1-D3, csp, cpp, cpmp, msp7. Genetic diversity, the proportion of multiclonal infections, multiplicity of infection, and population structure were analysed. RESULTS: Among 198 samples selected for sequencing, data was obtained for 181 samples. Mean MOI was 1.38 (95% CI 1.24-1.53) and 17% (31/181) of infections were polyclonal. Mean He across all markers was 0.730. Population structure was moderate; populations from Metema and Metehara 2015 were very similar to each other, but distinct from Wondogent 2015 and Metehara 2019. CONCLUSION: The high level of parasite genetic diversity and moderate population structure in this study suggests frequent gene flow of parasites among sites. The results obtained can be used as a baseline for additional parasite genetic diversity and structure studies, aiding in the formulation of appropriate control strategies in Ethiopia.


Assuntos
Malária Falciparum , Parasitos , Humanos , Animais , Plasmodium falciparum/genética , Etiópia/epidemiologia , Variação Genética , Malária Falciparum/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala
15.
BMC Infect Dis ; 23(1): 405, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312065

RESUMO

One of the key obstacles to malaria elimination is largely attributed to Plasmodium vivax's ability to form resilient hypnozoites in the host liver that cause relapsing infections. As a result, interruption of P. vivax transmission is difficult. P. vivax transmission occurs in Duffy-positive individuals and have been mainly thought to be absent in Africa. However, increasing studies using molecular tools detected P. vivax among Duffy-negative individuals in various African countries. Studies on the African P. vivax has been severely limited because most of malaria control program focus mainly on falciparum malaria. In addition, there is a scarcity of laboratory infrastructures to overcome the biological obstacles posed by P. vivax. Herein, we established field transmission of Ethiopian P. vivax for routine sporozoite supply followed by liver stage infection in Mali. Furthermore, we evaluated local P. vivax hypnozoites and schizonts susceptibilities to reference antimalarial drugs. The study enabled the assessment of local African P. vivax hypnozoite production dynamics. Our data displayed the ability of the African P. vivax to produce hypnozoite forms ex-vivo at different rates per field isolate. We report that while tafenoquine (1µM) potently inhibited both hypnozoites and schizont forms; atovaquone (0.25µM) and the phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691 (0.5µM) showed no activity against hypnozoites forms. Unlike hypnozoites forms, P. vivax schizont stages were fully susceptible to both atovaquone (0.25µM) and the (PI4K)-specific inhibitor KDU691 (0.5µM). Together, the data revealed the importance of the local platform for further biological investigation and implementation of drug discovery program on the African P. vivax clinical isolates.


Assuntos
Antimaláricos , Malária Vivax , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium vivax , Atovaquona , Malária Vivax/tratamento farmacológico , Mali
16.
Antimicrob Agents Chemother ; 66(9): e0000222, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35993723

RESUMO

The emergence of artemisinin-resistant parasites in Africa has had a devastating impact, causing most malaria cases and related deaths reported on the continent. In Ethiopia, artemether-lumefantrine (AL) is the first-line drug for the treatment of uncomplicated falciparum malaria. This study is one of the earliest evaluations of artemether-lumefantrine (AL) efficacy in western Ethiopia, 17 years after the introduction of this drug in the study area. This study aimed at assessing PCR- corrected clinical and parasitological responses at 28 days following AL treatment. Sixty uncomplicated falciparum malaria patients were enrolled, treated with standard doses of AL, and monitored for 28 days with clinical and parasitological assessments from September 15 to December 15, 2020. Microscopy was used for patient recruitment and molecular diagnosis of P. falciparum was performed by Var gene acidic terminal sequence (varATS) real-time PCR on dried blood spots collected from each patient from day 0 and on follow-up days 1, 2, 3, 7, 14, 21, and 28. MspI and msp2 genotyping was done to confirm occurrence of recrudescence. Data entry and analysis were done by using the WHO-designed Excel spreadsheet and SPSS version 20 for Windows. A P value of less or equal to 0.05 was considered significant. From a total of 60 patients enrolled in this efficacy study, 10 were lost to follow-up; the results were analyzed for 50 patients. All the patients were fever-free on day 3. The asexual parasite positivity rate on day 3 was zero. However; 60% of the patients were PCR positive on day 3. PCR positivity on day 3 was more common among patients <15 years old as compared with those ≥15 years old (AOR = 6.44, P = 0.027). Only two patients met the case definition of treatment failure. These patients were classified as a late clinical failure as they showed symptoms of malaria and asexual stages of the parasite detected by microscopy on day 14 of their follow-ups. Hence, the Kaplan-Meier analysis of PCR- corrected adequate clinical and parasitological response (ACPR) rate of AL among study participants was 96% (95% CI: 84.9-99). In seven patients, the residual submicroscopic parasitemia persists from day 0 to day 28 of the follow-up. In addition, 16% (8/50) of patients were PCR- and then turned PCR+ after day 7 of the follow-up. AL remains efficacious for the treatment of uncomplicated falciparum malaria in the study area. However, the persistence of PCR-detected residual submicroscopic parasitemia following AL might compromise this treatment and need careful monitoring.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Adolescente , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Progressão da Doença , Etanolaminas/uso terapêutico , Etiópia , Fluorenos/uso terapêutico , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Parasitemia/tratamento farmacológico , Plasmodium falciparum/genética , Sudão , Resultado do Tratamento
17.
Malar J ; 21(1): 267, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109748

RESUMO

BACKGROUND: Plasmodium falciparum is the most serious, genetically most complex and fastest-evolving malaria parasite. Information on genetic diversity of this parasite would guide policy decision and malaria elimination endeavors. This study explored the temporal dynamics of P. falciparum population in two time points in Metehara, east-central Ethiopia. METHODS: The participants were quantitative real-time polymerase chain reaction-confirmed patients who were recruited for uncomplicated falciparum malaria therapeutic efficacy test in 2015 and 2019. Dry blood spot samples were analysed by the nested PCR to genotype P. falciparum merozoite surface protein (msp1, msp2) and glutamate-rich protein (glurp) genes. RESULTS: While msp1, msp2 and glurp genotypes were successfully detected in 26(89.7%), 24(82.8%) and 14(48.3%) of 2015 samples (n = 29); the respective figures for 2019 (n = 41) were 31(68.3%), 39(95.1%), 25(61.0%). In 2015, the frequencies of K1, MAD20 and RO33 allelic families of msp1, and FC27 and IC/3D7 of msp2 were 19(73.1%), 8(30.6%), 14(53.8%), 21(87.5%), 12(50.5%); and in 2019 it was 15(48.4%), 19(61.3%), 15(48.4%), 30(76.9%), 27(69.2%) respectively. MAD20 has shown dominance over both K1 and RO33 in 2019 compared to the proportion in 2015. Similarly, although FC27 remained dominant, there was shifting trend in the frequency of IC/3D7 from 50.5% in 2015 to 69.2% in 2019. The multiplicity of infection (MOI) and expected heterozygosity index (He) in 2015 and 2019 were respectively [1.43 ± 0.84] and [1.15 ± 0.91], 0.3 and 0.03 for msp1. However, there was no significant association between MOI and age or parasitaemia in both time points. CONCLUSION: The lower genetic diversity in P. falciparum population in the two time points and overall declining trend as demonstrated by the lower MOI and He may suggest better progress in malaria control in Metehara. But, the driving force and selective advantage of switching to MAD20 dominance over the other two msp1 allelic families, and the dynamics within msp2 alleles needs further investigation.


Assuntos
Malária Falciparum , Plasmodium falciparum , Antígenos de Protozoários/genética , Etiópia/epidemiologia , Variação Genética , Ácido Glutâmico , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Proteínas de Membrana/genética , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase em Tempo Real
18.
Malar J ; 21(1): 286, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207750

RESUMO

BACKGROUND: Plasmodium falciparum resistance to series of anti-malarial drugs is a major challenge in efforts to control and/or eliminate malaria globally. In 1998, following the widespread of chloroquine (CQ) resistant P. falciparum, Ethiopia switched from CQ to sulfadoxine-pyrimethamine (SP) and subsequently in 2004 from SP to artemether-lumefantrine (AL) for the treatment of uncomplicated falciparum malaria. Data on the prevalence of CQ resistance markers after more than two decades of its removal is important to map the selection pressure behind the targets codons of interest. The present study was conducted to determine the prevalence of mutations in Pfcrt K76T and Pfmdr1 N86Y codons among malaria-infected patients from Adama, Olenchiti and Metehara sites of East Shewa zone, Oromia Regional State, Ethiopia. METHODS: Finger-prick whole blood samples were collected on 3MM Whatman ® filter papers from a total of 121 microscopically confirmed P. falciparum infected patients. Extraction of parasite DNA was done by Chelex-100 method from dried blood spot (DBS). Genomic DNA template was used to amplify Pfcrt K76T and Pfmdr1 N86Y codons by nested PCR. Nested PCR products were subjected to Artherobacter protophormiae-I (APoI) restriction enzyme digestion to determine mutations at codons 76 and 86 of Pfcrt and Pfmdr1 genes, respectively. RESULTS: Of 83 P. falciparum isolates successfully genotyped for Pfcrt K76T, 91.6% carried the mutant genotypes (76T). The prevalence of Pfcrt 76T was 95.7%, 92.5% and 84.5% in Adama, Metehara and Olenchiti, respectively. The prevalence of Pfcrt 76T mutations in three of the study sites showed no statistical significance difference (χ2 = 1.895; P = 0.388). On the other hand, of the 80 P. falciparum samples successfully amplified for Pfmdr1, all carried the wild-type genotypes (Pfmdr1 N86). CONCLUSION: Although CQ officially has been ceased for the treatment of falciparum malaria for more than two decades in Ethiopia, greater proportions of P. falciparum clinical isolates circulating in the study areas carry the mutant 76T genotypes indicating the presence of indirect CQ pressure in the country. However, the return of Pfmdr1 N86 wild-type allele may be favoured by the use of AL for the treatment of uncomplicated falciparum malaria.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Resistência a Medicamentos/genética , Etiópia/epidemiologia , Genótipo , Instalações de Saúde , Humanos , Malária/epidemiologia , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum , Prevalência , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
19.
Malar J ; 21(1): 383, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522733

RESUMO

BACKGROUND: Genetic diversity of malaria parasites can inform the intensity of transmission and poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity would provide essential information about the ongoing control efforts. This study aimed to explore allelic polymorphism of merozoite surface protein 1 (msp1) and merozoite surface protein 2 (msp2) to determine the genetic diversity and multiplicity of Plasmodium falciparum infections circulating in high and low transmission sites in western Ethiopia. METHODS: Parasite genomic DNA was extracted from a total of 225 dried blood spots collected from confirmed uncomplicated P. falciparum malaria-infected patients in western Ethiopia. Of these, 72.4% (163/225) and 27.6% (62/225) of the samples were collected in high and low transmission areas, respectively. Polymorphic msp1 and msp2 genes were used to explore the genetic diversity and multiplicity of falciparum malaria infections. Genotyping of msp1 was successful in 86.5% (141/163) and 88.7% (55/62) samples collected from high and low transmission areas, respectively. Genotyping of msp2 was carried out among 85.3% (139/163) and 96.8% (60/62) of the samples collected in high and low transmission sites, respectively. Plasmodium falciparum msp1 and msp2 genes were amplified by nested PCR and the PCR products were analysed by QIAxcel ScreenGel Software. A P-value of less or equal to 0.05 was considered significant. RESULTS: High prevalence of falciparum malaria was identified in children less than 15 years as compared with those ≥ 15 years old (AOR = 2.438, P = 0.005). The three allelic families of msp1 (K1, MAD20, and RO33) and the two allelic families of msp2 (FC27 and 3D7), were observed in samples collected in high and low transmission areas. However, MAD 20 and FC 27 alleles were the predominant allelic families in both settings. Plasmodium falciparum isolates circulating in western Ethiopia had low genetic diversity and mean MOI. No difference in mean MOI between high transmission sites (mean MOI 1.104) compared with low transmission area (mean MOI 1.08) (p > 0.05). The expected heterozygosity of msp1 was slightly higher in isolates collected from high transmission sites (He = 0.17) than in those isolates from low transmission (He = 0.12). However, the heterozygosity of msp2 was not different in both settings (Pfmsp2: 0.04 in high transmission; pfmsp2: 0.03 in low transmission). CONCLUSION: Plasmodium falciparum from clinical malaria cases in western Ethiopia has low genetic diversity and multiplicity of infection irrespective of the intensity of transmission at the site of sampling. These may be signaling the effectiveness of malaria control strategies in Ethiopia; although further studies are required to determine how specific intervention strategies and other parameters that drive the pattern.


Assuntos
Malária Falciparum , Proteína 1 de Superfície de Merozoito , Criança , Masculino , Humanos , Adolescente , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/genética , Antígenos de Protozoários/genética , Etiópia/epidemiologia , Proteínas de Protozoários/genética , Variação Genética , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Proteínas de Membrana/genética , Genótipo
20.
Malar J ; 21(1): 230, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915453

RESUMO

BACKGROUND: The increase in detections of Plasmodium vivax infection in Duffy-negative individuals in Africa has challenged the dogma establishing the unique P. vivax Duffy Binding Protein-Duffy antigen receptor for chemokines (PvDBP-DARC) pathway used by P. vivax merozoites to invade reticulocytes. Information on the impact of Duffy antigen polymorphisms on the epidemiology of P. vivax malaria remains elusive. The objective of this study was to determine the distribution of asexual parasitaemia of P. vivax according to the Duffy antigen polymorphisms in Ethiopia. METHODS: DNA was extracted from dried blood spots (DBS) collected from prospectively recruited 138 P. vivax-infected patients from health centres. The identification and estimation of P. vivax asexual parasitaemia were performed by microscopic examination and quantitative real-time polymerase chain reaction (PCR). Duffy genotyping was conducted by DNA sequencing in a total of 138 P.vivax infected samples. RESULTS: The proportion of Duffy-negatives (FY*BES/FY*BES) in P. vivax infected patients was 2.9% (4/138). Duffy genotype FY*B/FY*BES (48.6%) was the most common, followed by FY*A/FY*BES genotype (25.4%). In one patient, the FY*02 W.01/FY*02 N.01 genotype conferring a weak expression of the Fyb antigen was observed. All P.vivax infected Duffy-negative patients showed low asexual parasitaemia (≤ 110 parasites/µL). The median P. vivax parasitaemia in Duffy-negative patients (53 parasites/µL) was significantly lower than those found in homozygous and heterozygous individuals (P < 0.0001). CONCLUSION: Plasmodium vivax in Duffy-negative patients shows invariably low asexual parasitaemia. This finding suggests that the pathway used by P. vivax to invade Duffy-negative reticulocytes is much less efficient than that used in Duffy-positives. Moreover, the low asexual parasitaemia observed in Duffy-negative individuals could constitute an 'undetected silent reservoir', thus likely delaying the elimination of vivax malaria in Ethiopia.


Assuntos
Malária Vivax , Malária , Sistema do Grupo Sanguíneo Duffy/genética , Etiópia/epidemiologia , Humanos , Parasitemia/epidemiologia , Plasmodium vivax/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa