Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
EMBO J ; 42(4): e112453, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36594364

RESUMO

Synaptic dysfunction caused by soluble ß-amyloid peptide (Aß) is a hallmark of early-stage Alzheimer's disease (AD), and is tightly linked to cognitive decline. By yet unknown mechanisms, Aß suppresses the transcriptional activity of cAMP-responsive element-binding protein (CREB), a master regulator of cell survival and plasticity-related gene expression. Here, we report that Aß elicits nucleocytoplasmic trafficking of Jacob, a protein that connects a NMDA-receptor-derived signalosome to CREB, in AD patient brains and mouse hippocampal neurons. Aß-regulated trafficking of Jacob induces transcriptional inactivation of CREB leading to impairment and loss of synapses in mouse models of AD. The small chemical compound Nitarsone selectively hinders the assembly of a Jacob/LIM-only 4 (LMO4)/ Protein phosphatase 1 (PP1) signalosome and thereby restores CREB transcriptional activity. Nitarsone prevents impairment of synaptic plasticity as well as cognitive decline in mouse models of AD. Collectively, the data suggest targeting Jacob protein-induced CREB shutoff as a therapeutic avenue against early synaptic dysfunction in AD.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Sinapses/metabolismo
2.
Neuroimage ; 177: 88-97, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29723641

RESUMO

Mapping the activity of the human mesolimbic dopamine system by BOLD-fMRI is a tempting approach to non-invasively study the action of the brain reward system during different experimental conditions. However, the contribution of dopamine release to the BOLD signal is disputed. To assign the actual contribution of dopaminergic and non-dopaminergic VTA neurons to the formation of BOLD responses in target regions of the mesolimbic system, we used two optogenetic approaches in rats. We either activated VTA dopaminergic neurons selectively, or dopaminergic and mainly glutamatergic projecting neurons together. We further used electrical stimulation to non-selectively activate neurons in the VTA. All three stimulation conditions effectively activated the mesolimbic dopaminergic system and triggered dopamine releases into the NAcc as measured by in vivo fast-scan cyclic voltammetry. Furthermore, both optogenetic stimulation paradigms led to indistinguishable self-stimulation behavior. In contrast to these similarities, however, the BOLD response pattern differed greatly between groups. In general, BOLD responses were weaker and sparser with increasing stimulation specificity for dopaminergic neurons. In addition, repetitive stimulation of the VTA caused a progressive decoupling of dopamine release and BOLD signal strength, and dopamine receptor antagonists were unable to block the BOLD signal elicited by VTA stimulation. To exclude that the sedation during fMRI is the cause of minimal mesolimbic BOLD in response to specific dopaminergic stimulation, we repeated our experiments using CBF SPECT in awake animals. Again, we found activations only for less-specific stimulation. Based on these results we conclude that canonical BOLD responses in the reward system represent mainly the activity of non-dopaminergic neurons. Thus, the minor effects of projecting dopaminergic neurons are concealed by non-dopaminergic activity, a finding which highlights the importance of a careful interpretation of reward-related human fMRI data.


Assuntos
Encéfalo/fisiologia , Dopamina/metabolismo , Imageamento por Ressonância Magnética/métodos , Neurônios/fisiologia , Acoplamento Neurovascular/fisiologia , Recompensa , Área Tegmentar Ventral/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Antagonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/fisiologia , Estimulação Elétrica , Eletrodos Implantados , Vetores Genéticos , Neurônios/metabolismo , Optogenética , Ratos , Ratos Long-Evans , Ratos Transgênicos , Ratos Wistar , Autoestimulação/fisiologia , Técnicas Estereotáxicas , Tomografia Computadorizada de Emissão de Fóton Único , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/metabolismo
3.
Neuroimage ; 103: 171-180, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25234116

RESUMO

Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Optogenética/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Encéfalo/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Compostos Radiofarmacêuticos , Recompensa , Autoestimulação , Tecnécio Tc 99m Exametazima
4.
BMC Neurosci ; 14: 78, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23902414

RESUMO

BACKGROUND: Propagating waves of excitation have been observed extensively in the neocortex, during both spontaneous and sensory-evoked activity, and they play a critical role in spatially organizing information processing. However, the state-dependence of these spatiotemporal propagation patterns is largely unexplored. In this report, we use voltage-sensitive dye imaging in the rat visual cortex to study the propagation of spontaneous population activity in two discrete cortical states induced by urethane anesthesia. RESULTS: While laminar current source density patterns of spontaneous population events in these two states indicate a considerable degree of similarity in laminar networks, lateral propagation in the more active desynchronized state is approximately 20% faster than in the slower synchronized state. Furthermore, trajectories of wave propagation exhibit a strong anisotropy, but the preferred direction is different depending on cortical state. CONCLUSIONS: Our results show that horizontal wave propagation of spontaneous neural activity is largely dependent on the global activity states of local cortical circuits.


Assuntos
Anestésicos/farmacologia , Ondas Encefálicas/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Uretana/farmacologia , Córtex Visual/efeitos dos fármacos , Animais , Ondas Encefálicas/fisiologia , Sincronização Cortical/efeitos dos fármacos , Sincronização Cortical/fisiologia , Eletroencefalografia , Masculino , Rede Nervosa/fisiologia , Ratos , Ratos Wistar , Córtex Visual/fisiologia , Imagens com Corantes Sensíveis à Voltagem
5.
Cereb Cortex ; 22(8): 1824-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21940702

RESUMO

Thallium autometallography (TIAMG) is a novel method for high-resolution mapping of neuronal activity. With this method, we found that a general depression of neuronal activity occurs in response to optic nerve crush (ONC) within the first 2 weeks postinjury in the contralateral dorsal lateral geniculate nucleus (dLGN) as well as in the contralateral primary visual cortex (V1). Interestingly, the neuronal activity recovered thereafter in both brain regions and reached a plateau in the tenth week postinjury in layers IV and V of V1, monocular area (V1m). Several clusters of highly active neurons in V1m were found 6 weeks after ONC in layers IV and V on the side contralateral to the lesion. We reasoned that these clusters appeared due to a reorganization of the corticocolliucular projections. Employing a combination of biotinylated dextran amine retrograde tract tracing from the superior colliculus (SC) with TIAMG in the same animal, we indeed found that the clusters of neurons with high Tl(+) uptake in V1m are spatially in register with those neuronal subpopulations that project to the SC. These data suggest that extensive reorganization plasticity exists in the adult rat visual cortex following ONC.


Assuntos
Lateralidade Funcional/fisiologia , Traumatismos do Nervo Óptico/fisiopatologia , Córtex Visual/fisiopatologia , Vias Visuais/fisiopatologia , Animais , Corpos Geniculados/fisiopatologia , Masculino , Compressão Nervosa , Ratos , Ratos Wistar , Colículos Superiores/fisiopatologia
6.
Neuroimage ; 63(4): 1807-17, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22971548

RESUMO

Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1.7%, p=0.000) and at young adult age (AI=2.4 ± 1.7%, p=0.000). Gender had no effect on asymmetry. Voxel-wise testing confirmed the ROI-based findings. In conclusion, high-resolution HMPAO SPECT is a promising technique for measuring rCBF in preclinical research. It indicates lateral asymmetry of rCBF in the mouse brain as well as age-related changes during late maturation. ECD is not suitable as tracer for brain SPECT in the mouse because of its fast clearance from tissue indicating an interspecies difference in esterase activity between mice and humans.


Assuntos
Envelhecimento/fisiologia , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Cisteína/análogos & derivados , Cisteína/farmacocinética , Feminino , Lateralidade Funcional/fisiologia , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Compostos de Organotecnécio/farmacocinética , Perfusão , Compostos Radiofarmacêuticos/farmacocinética , Caracteres Sexuais , Tecnécio Tc 99m Exametazima/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único
7.
J Neurochem ; 122(1): 106-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22500883

RESUMO

The potassium (K(+)) analogue thallium (Tl(+)) can be used as a tracer for mapping neuronal activity. However, because of the poor blood-brain barrier (BBB) K(+) -permeability, only minute amounts of Tl(+) enter the brain after systemic injection of Tl(+) -salts like thallium acetate (TlAc). We have recently shown that it is possible to overcome this limitation by injecting animals with the lipophilic chelate complex thallium diethyldithiocarbamate (TlDDC), that crosses the BBB and releases Tl(+) prior to neuronal or glial uptake. TlDDC can thus be used for mapping CNS K(+) metabolism and neuronal activity. Here, we analyze Tl(+) -kinetics in the rodent brain both experimentally and using simple mathematical models. We systemically injected animals either with TlAc or with TlDDC. Using an autometallographic method we mapped the brain Tl(+) -distribution at various time points after injection. We show that the patterns and kinetics of Tl(+) -redistribution in the brain are essentially the same irrespective of whether animals have been injected with TlAc or TlDDC. Data from modeling and experiments indicate that transmembrane Tl(+) -fluxes in cells within the CNS in vivo equilibrate at similar rates as K(+) -fluxes in vitro. This equilibration is much faster than and largely independent of the equilibration of Tl(+) -fluxes across the BBB. The study provides further proof-of-concept for the use of TlDDC for mapping neuronal activity and CNS K(+) -metabolism. A theoretical guideline is given for the use of K(+) -analogues for imaging neuronal activity with general implications for the use of metal ions in neuroimaging.


Assuntos
Mapeamento Encefálico , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Potássio/metabolismo , Tálio/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Animais , Sistema Nervoso Central/citologia , Ditiocarb/farmacologia , Vias de Administração de Medicamentos , Masculino , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Compostos Organometálicos/farmacologia , Ratos , Ratos Wistar , Fatores de Tempo
8.
Brain Sci ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070079

RESUMO

Active avoidance learning is a complex form of aversive feedback learning that in humans and other animals is essential for actively coping with unpleasant, aversive, or dangerous situations. Since the functional circuits involved in two-way avoidance (TWA) learning have not yet been entirely identified, the aim of this study was to obtain an overall picture of the brain circuits that are involved in active avoidance learning. In order to obtain a longitudinal assessment of activation patterns in the brain of freely behaving rats during different stages of learning, we applied single-photon emission computed tomography (SPECT). We were able to identify distinct prefrontal cortical, sensory, and limbic circuits that were specifically recruited during the acquisition and retrieval phases of the two-way avoidance learning task.

9.
Brain Neurosci Adv ; 5: 23982128211036332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34423137

RESUMO

There is currently no brain atlas available to specifically determine stereotaxic coordinates for neurosurgery in Lister hooded rats despite the popularity of this strain for behavioural neuroscience studies in the United Kingdom and elsewhere. We have created a dataset, which we refer to as 'Ratlas-LH' (for Lister hooded). Ratlas-LH combines in vivo magnetic resonance images of the brain of young adult male Lister hooded rats with ex vivo micro-computed tomography images of the ex vivo skull, as well as a set of delineations of brain regions, adapted from the Waxholm Space Atlas of the Sprague Dawley Rat Brain. Ratlas-LH was produced with an isotropic resolution of 0.15 mm. It has been labelled in such a way as to provide a stereotaxic coordinate system for the determination of distances relative to the skull landmark of bregma. We have demonstrated that the atlas can be used to determine stereotaxic coordinates to accurately target brain regions in the Lister hooded rat brain. Ratlas-LH is freely available to facilitate neurosurgical procedures in the Lister hooded rat.

10.
Brain Struct Funct ; 226(5): 1533-1551, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33844052

RESUMO

Hearing deficits impact on the communication with the external world and severely compromise perception of the surrounding. Deafness can be caused by particular mutations in the neuroplastin (Nptn) gene, which encodes a transmembrane recognition molecule of the immunoglobulin (Ig) superfamily and plasma membrane Calcium ATPase (PMCA) accessory subunit. This study investigates whether the complete absence of neuroplastin or the loss of neuroplastin in the adult after normal development lead to hearing impairment in mice analyzed by behavioral, electrophysiological, and in vivo imaging measurements. Auditory brainstem recordings from adult neuroplastin-deficient mice (Nptn-/-) show that these mice are deaf. With age, hair cells and spiral ganglion cells degenerate in Nptn-/- mice. Adult Nptn-/- mice fail to behaviorally respond to white noise and show reduced baseline blood flow in the auditory cortex (AC) as revealed by single-photon emission computed tomography (SPECT). In adult Nptn-/- mice, tone-evoked cortical activity was not detectable within the primary auditory field (A1) of the AC, although we observed non-persistent tone-like evoked activities in electrophysiological recordings of some young Nptn-/- mice. Conditional ablation of neuroplastin in Nptnlox/loxEmx1Cre mice reveals that behavioral responses to simple tones or white noise do not require neuroplastin expression by central glutamatergic neurons. Loss of neuroplastin from hair cells in adult NptnΔlox/loxPrCreERT mice after normal development is correlated with increased hearing thresholds and only high prepulse intensities result in effective prepulse inhibition (PPI) of the startle response. Furthermore, we show that neuroplastin is required for the expression of PMCA 2 in outer hair cells. This suggests that altered Ca2+ homeostasis underlies the observed hearing impairments and leads to hair cell degeneration. Our results underline the importance of neuroplastin for the development and the maintenance of the auditory system.


Assuntos
Audição , Animais , Limiar Auditivo , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
11.
Neuroimage ; 49(1): 303-15, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19682585

RESUMO

In neurons the rate of K(+)-uptake increases with increasing activity. K(+)-analogues like the heavy metal ion thallium (Tl(+)) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl(+)-salts are injected systemically only minute amounts of the tracer enter the brain and the Tl(+)-uptake patterns are influenced by regional differences in blood-brain barrier (BBB) K(+)-permeability. We here show that the BBB-related limitations in using Tl(+) for imaging neuronal activity are no longer present when the lipophilic Tl(+) chelate complex thallium diethyldithiocarbamate (TlDDC) is applied. We systemically injected rodents with TlDDC and mapped the Tl(+)-distribution in the brain using an autometallographic (AMG) technique, a histochemical method for detecting heavy metals. We find that Tl(+)-doses for optimum AMG staining could be substantially reduced, and regional differences attributable to differences in BBB K(+)-permeability were no longer detectable, indicating that TlDDC crosses the BBB. At the cellular level, however, the Tl(+)-distribution was essentially the same as after injection of water-soluble Tl(+)-salts, indicating Tl(+)-release from TlDDC prior to neuronal or glial uptake. Upon sensory stimulation or intracortical microstimulation neuronal Tl(+)-uptake increased after TlDDC injection, upon muscimol treatment neuronal Tl(+)-uptake decreased. We present a protocol for mapping neuronal activity with cellular resolution, which is based on intravenous TlDDC injections during ongoing activity in unrestrained behaving animals and short stimulation times of 5 min.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/citologia , Quelantes , Ditiocarb , Neurônios/fisiologia , Compostos Radiofarmacêuticos , Estimulação Acústica , Animais , Autorradiografia , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/fisiologia , Quelantes/administração & dosagem , Ditiocarb/administração & dosagem , Feminino , Formaldeído , Agonistas GABAérgicos , Gerbillinae , Injeções Intraperitoneais , Injeções Intravenosas , Veias Jugulares/fisiologia , Masculino , Muscimol , Medição da Dor/efeitos dos fármacos , Compostos Radiofarmacêuticos/administração & dosagem , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
12.
Brain Stimul ; 13(2): 363-371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31812449

RESUMO

BACKGROUND: Optogenetic stimulation has grown into a popular brain stimulation method in basic neuroscience while electrical stimulation predominates in clinical applications. In order to explain the effects of electrical stimulation on a cellular level and evaluate potential advantages of optogenetic therapies, comparisons between the two stimulation modalities are necessary. This comparison is hindered, however, by the difficulty of effectively matching the two fundamentally different modalities. OBJECTIVE: Comparison of brain-wide activation patterns in response to intensity-matched electrical and optogenetic VTA stimulation. METHODS: We mapped optogenetic and electrical self-stimulation rates in the same mice over stimulation intensity and determined iso-behavioral intensities. Using functional 99mTc-HMPAO SPECT imaging of cerebral blood flow in awake animals, we obtained brain-wide activation patterns for both modalities at these iso-behavioral intensities. We performed these experiments in two mouse lines commonly used for optogenetic VTA stimulation, DAT::Cre and TH::Cre mice. RESULTS: We find iso-behavioral intensity matching of stimulation gives rise to similar brain activation patterns. Differences between mouse lines were more pronounced than differences between modalities. CONCLUSIONS: Previously found large differences of electrical and optogenetic stimulation might be due to unmatched stimulation intensity, particularly relative electrical overstimulation. These findings imply that therapeutic electrical VTA stimulation might be relatively specific if employed with optimized parameters.


Assuntos
Optogenética/métodos , Área Tegmentar Ventral/fisiologia , Animais , Circulação Cerebrovascular , Estimulação Elétrica/métodos , Potenciais Evocados , Camundongos , Optogenética/normas , Tomografia Computadorizada de Emissão de Fóton Único , Área Tegmentar Ventral/diagnóstico por imagem
13.
Brain Struct Funct ; 223(3): 1165-1190, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29094306

RESUMO

The nervous system integrates information from multiple senses. This multisensory integration already occurs in primary sensory cortices via direct thalamocortical and corticocortical connections across modalities. In humans, sensory loss from birth results in functional recruitment of the deprived cortical territory by the spared senses but the underlying circuit changes are not well known. Using tracer injections into primary auditory, somatosensory, and visual cortex within the first postnatal month of life in a rodent model (Mongolian gerbil) we show that multisensory thalamocortical connections emerge before corticocortical connections but mostly disappear during development. Early auditory, somatosensory, or visual deprivation increases multisensory connections via axonal reorganization processes mediated by non-lemniscal thalamic nuclei and the primary areas themselves. Functional single-photon emission computed tomography of regional cerebral blood flow reveals altered stimulus-induced activity and higher functional connectivity specifically between primary areas in deprived animals. Together, we show that intracortical multisensory connections are formed as a consequence of sensory-driven multisensory thalamocortical activity and that spared senses functionally recruit deprived cortical areas by an altered development of sensory thalamocortical and corticocortical connections. The functional-anatomical changes after early sensory deprivation have translational implications for the therapy of developmental hearing loss, blindness, and sensory paralysis and might also underlie developmental synesthesia.


Assuntos
Mapeamento Encefálico , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Sensação/fisiologia , Córtex Somatossensorial/fisiologia , Núcleos Talâmicos/fisiologia , Estimulação Acústica , Fatores Etários , Animais , Proteínas do Domínio Duplacortina , Feminino , Proteína GAP-43/metabolismo , Gerbillinae , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Neuropeptídeos/metabolismo , Estimulação Luminosa , Privação Sensorial , Córtex Somatossensorial/diagnóstico por imagem , Estilbamidinas/metabolismo , Tecnécio Tc 99m Exametazima/farmacocinética , Núcleos Talâmicos/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único
14.
J Clin Invest ; 128(10): 4359-4371, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30024857

RESUMO

JAK2-V617F-positive chronic myeloproliferative neoplasia (CMN) commonly displays dysfunction of integrins and adhesion molecules expressed on platelets, erythrocytes, and leukocytes. However, the mechanism by which the 2 major leukocyte integrin chains, ß1 and ß2, may contribute to CMN pathophysiology remained unclear. ß1 (α4ß1; VLA-4) and ß2 (αLß2; LFA-1) integrins are essential regulators for attachment of leukocytes to endothelial cells. We here showed enhanced adhesion of granulocytes from mice with JAK2-V617F knockin (JAK2+/VF mice) to vascular cell adhesion molecule 1- (VCAM1-) and intercellular adhesion molecule 1-coated (ICAM1-coated) surfaces. Soluble VCAM1 and ICAM1 ligand binding assays revealed increased affinity of ß1 and ß2 integrins for their respective ligands. For ß1 integrins, this correlated with a structural change from the low- to the high-affinity conformation induced by JAK2-V617F. JAK2-V617F triggered constitutive activation of the integrin inside-out signaling molecule Rap1, resulting in translocation toward the cell membrane. Employing a venous thrombosis model, we demonstrated that neutralizing anti-VLA-4 and anti-ß2 integrin antibodies suppress pathologic thrombosis as observed in JAK2+/VF mice. In addition, aberrant homing of JAK2+/VF leukocytes to the spleen was inhibited by neutralizing anti-ß2 antibodies and by pharmacologic inhibition of Rap1. Thus, our findings identified cross-talk between JAK2-V617F and integrin activation promoting pathologic thrombosis and abnormal trafficking of leukocytes to the spleen.


Assuntos
Antígenos CD18/metabolismo , Integrina beta1/metabolismo , Janus Quinase 2/metabolismo , Mutação de Sentido Incorreto , Trombose Venosa/metabolismo , Substituição de Aminoácidos , Animais , Antígenos CD18/genética , Adesão Celular , Integrina alfa4beta1/genética , Integrina alfa4beta1/metabolismo , Integrina beta1/genética , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Janus Quinase 2/genética , Leucócitos/metabolismo , Leucócitos/patologia , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Camundongos Mutantes , Baço/metabolismo , Baço/patologia , Trombose Venosa/genética , Trombose Venosa/patologia , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
15.
Behav Brain Res ; 332: 164-171, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28552601

RESUMO

Fear is an important behavioral system helping humans and animals to survive potentially dangerous situations. Fear can be innate or learned. Whereas the neural circuits underlying learned fear are already well investigated, the knowledge about the circuits mediating innate fear is still limited. We here used a novel, unbiased approach to image in vivo the spatial patterns of neural activity in odor-induced innate fear behavior in rats. We intravenously injected awake unrestrained rats with a 99m-technetium labeled blood flow tracer (99mTc-HMPAO) during ongoing exposure to fox urine or water as control, and mapped the brain distribution of the trapped tracer using single-photon emission computed tomography (SPECT). Upon fox urine exposure blood flow increased in a number of brain regions previously associated with odor-induced innate fear such as the amygdala, ventromedial hypothalamus and dorsolateral periaqueductal grey, but, unexpectedly, decreased at higher significance levels in the interpeduncular nucleus (IPN). Significant flow changes were found in regions monosynaptically connected to the IPN. Flow decreased in the dorsal tegmentum and entorhinal cortex. Flow increased in the habenula (Hb) and correlated with odor effects on behavioral defensive strategy. Hb lesions reduced avoidance of but increased approach to the fox urine while IPN lesions only reduced avoidance behavior without approach behavior. Our study identifies a new component, the IPN, of the neural circuit mediating odor-induced innate fear behavior in mammals and suggests that the evolutionarily conserved Hb-IPN system, which has recently been implicated in cued fear, also forms an integral part of the innate fear circuitry.


Assuntos
Medo/fisiologia , Habenula/fisiologia , Núcleo Interpeduncular/fisiologia , Percepção Olfatória/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Mapeamento Encefálico , Raposas , Habenula/diagnóstico por imagem , Habenula/fisiopatologia , Núcleo Interpeduncular/diagnóstico por imagem , Núcleo Interpeduncular/fisiopatologia , Masculino , Modelos Animais , Odorantes , Comportamento Predatório , Compostos Radiofarmacêuticos , Ratos Sprague-Dawley , Ratos Wistar , Tecnécio Tc 99m Exametazima , Tomografia Computadorizada de Emissão de Fóton Único
16.
Sci Rep ; 7: 42847, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240235

RESUMO

Studies of brain cytoarchitecture in mammals are routinely performed by serial sectioning of the specimen and staining of the sections. The procedure is labor-intensive and the 3D architecture can only be determined after aligning individual 2D sections, leading to a reconstructed volume with non-isotropic resolution. Propagation-based x-ray phase-contrast tomography offers a unique potential for high-resolution 3D imaging of intact biological specimen due to the high penetration depth and potential resolution. We here show that even compact laboratory CT at an optimized liquid-metal jet microfocus source combined with suitable phase-retrieval algorithms and a novel tissue preparation can provide cellular and subcellular resolution in millimeter sized samples of mouse brain. We removed water and lipids from entire mouse brains and measured the remaining dry tissue matrix in air, lowering absorption but increasing phase contrast. We present single-cell resolution images of mouse brain cytoarchitecture and show that axons can be revealed in myelinated fiber bundles. In contrast to optical 3D techniques our approach does neither require staining of cells nor tissue clearing, procedures that are increasingly difficult to apply with increasing sample and brain sizes. The approach thus opens a novel route for high-resolution high-throughput studies of brain architecture in mammals.


Assuntos
Encéfalo/citologia , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Animais , Camundongos , Microscopia de Contraste de Fase , Análise de Célula Única
17.
Brain Struct Funct ; 222(9): 4005-4021, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28589257

RESUMO

Traumatic brain injury (TBI) is a leading cause of disability and death and survivors often suffer from long-lasting motor impairment, cognitive deficits, anxiety disorders and epilepsy. Few experimental studies have investigated long-term sequelae after TBI and relations between behavioral changes and neural activity patterns remain elusive. We examined these issues in a murine model of TBI combining histology, behavioral analyses and single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (CBF) as a proxy for neural activity. Adult C57Bl/6N mice were subjected to unilateral cortical impact injury and investigated at early (15-57 days after lesion, dal) and late (184-225 dal) post-traumatic time points. TBI caused pronounced tissue loss of the parietal cortex and subcortical structures and enduring neurological deficits. Marked perilesional astro- and microgliosis was found at 57 dal and declined at 225 dal. Motor and gait pattern deficits occurred at early time points after TBI and improved over the time. In contrast, impaired performance in the Morris water maze test and decreased anxiety-like behavior persisted together with an increased susceptibility to pentylenetetrazole-induced seizures suggesting alterations in neural activity patterns. Accordingly, SPECT imaging of CBF indicated asymmetric hemispheric baseline neural activity patterns. In the ipsilateral hemisphere, increased baseline neural activity was found in the amygdala. In the contralateral hemisphere, homotopic to the structural brain damage, the hippocampus and distinct cortex regions displayed increased baseline neural activity. Thus, regionally elevated CBF along with behavioral alterations indicate that increased neural activity is critically involved in the long-lasting consequences of TBI.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Circulação Cerebrovascular/fisiologia , Transtornos Mentais/etiologia , Animais , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Medo/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipocalina-2/metabolismo , Imageamento por Ressonância Magnética , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pentilenotetrazol/toxicidade , Desempenho Psicomotor , Convulsões/induzido quimicamente , Convulsões/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Índices de Gravidade do Trauma
18.
J Nucl Med ; 58(6): 936-941, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28254866

RESUMO

Increased expression of neurotensin receptor 1 (NTR1) has been shown in a large number of tumor entities such as pancreatic or colon carcinoma. Hence, this receptor is a promising target for diagnostic imaging and radioligand therapy. Using the favorable biodistribution data of the NTR1-targeting agent 111In-3BP-227, we investigated the therapeutic effect of its 177Lu-labeled analog on the tumor growth of NTR1-positive HT29 colon carcinoma xenografts. Methods: 3BP-227 was labeled with 177Lu. To assess its biodistribution properties, SPECT and CT scans of HT29-xenografted nude mice injected with 177Lu-3BP-227 were acquired, and ex vivo tissue activity was determined. To evaluate therapeutic efficacy, 2 groups of mice received the radiopharmaceutical in a median dose of either 165 MBq (129-232 MBq, n = 10) or 110 MBq (82-116 MBq, n = 10), whereas control mice were injected with vehicle (n = 10). Tumor sizes and body weights were monitored for up to 49 d. Renal function and histologic morphology were evaluated. Results: Whole-body SPECT/CT images allowed clear tumor visualization with low background activity and high tumor-to-kidney and -liver ratios. Ex vivo biodistribution data confirmed high and persistent uptake of 177Lu-3BP-227 in HT29 tumors (19.0 ± 3.6 vs. 2.7 ± 1.6 percentage injected dose per gram at 3 and 69 h after injection, respectively). The application of 177Lu-3BP-227 resulted in a distinct delay of tumor growth. Median tumor doubling time for controls was 5.5 d (interquartile range [IQR], 2.8-7.0), compared with 17.5 d (IQR, 5.5-22.5 d) for the 110-MBq and 41.0 d (IQR, 27.5-55.0) for the 165-MBg group. Compared with controls, median relative tumor volume at day 23 after injection was reduced by 55% (P = 0.034) in the 110-MBq and by 88% (P < 0.01) in the 165-MBq group. Renal histology and clinical chemistry results did not differ between radiotherapy groups and controls, suggesting absence of therapy-induced acute renal damage. Conclusion: These data demonstrate that the novel NTR1-targeting theranostic agent 3BP-227 is an effective and promising candidate for radioligand therapy, with a favorable preliminary safety profile and high potential for clinical translation.


Assuntos
Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/radioterapia , Lutécio/uso terapêutico , Terapia de Alvo Molecular/métodos , Receptores de Neurotensina/antagonistas & inibidores , Nanomedicina Teranóstica/métodos , Animais , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Células HT29 , Humanos , Camundongos , Camundongos Nus , Compostos Radiofarmacêuticos/uso terapêutico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
19.
Sci Rep ; 7(1): 7273, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779130

RESUMO

The cell adhesion molecule neuroplastin (Np) is a novel candidate to influence human intelligence. Np-deficient mice display complex cognitive deficits and reduced levels of Plasma Membrane Ca2+ ATPases (PMCAs), an essential regulator of the intracellular Ca2+ concentration ([iCa2+]) and neuronal activity. We show abundant expression and conserved cellular and molecular features of Np in glutamatergic neurons in human hippocampal-cortical pathways as characterized for the rodent brain. In Nptn lox/loxEmx1Cre mice, glutamatergic neuron-selective Np ablation resulted in behavioral deficits indicating hippocampal, striatal, and sensorimotor dysfunction paralleled by highly altered activities in hippocampal CA1 area, sensorimotor cortex layers I-III/IV, and the striatal sensorimotor domain detected by single-photon emission computed tomography. Altered hippocampal and cortical activities correlated with reduction of distinct PMCA paralogs in Nptn lox/loxEmx1Cre mice and increased [iCa2+] in cultured mutant neurons. Human and rodent Np enhanced the post-transcriptional expression of and co-localized with PMCA paralogs in the plasma membrane of transfected cells. Our results indicate Np as essential for PMCA expression in glutamatergic neurons allowing proper [iCa2+] regulation and normal circuit activity. Neuron-type-specific Np ablation empowers the investigation of circuit-coded learning and memory and identification of causal mechanisms leading to cognitive deterioration.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Cálcio/metabolismo , Glicoproteínas de Membrana/genética , Neurônios/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Circulação Cerebrovascular , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Expressão Gênica , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Transporte Proteico
20.
Biol Psychiatry ; 81(2): 124-135, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27215477

RESUMO

BACKGROUND: Neuroplastin cell recognition molecules have been implicated in synaptic plasticity. Polymorphisms in the regulatory region of the human neuroplastin gene (NPTN) are correlated with cortical thickness and intellectual abilities in adolescents and in individuals with schizophrenia. METHODS: We characterized behavioral and functional changes in inducible conditional neuroplastin-deficient mice. RESULTS: We demonstrate that neuroplastins are required for associative learning in conditioning paradigms, e.g., two-way active avoidance and fear conditioning. Retrograde amnesia of learned associative memories is elicited by inducible neuron-specific ablation of Nptn gene expression in adult mice, which shows that neuroplastins are indispensable for the availability of previously acquired associative memories. Using single-photon emission computed tomography imaging in awake mice, we identified brain structures activated during memory recall. Constitutive neuroplastin deficiency or Nptn gene ablation in adult mice causes substantial electrophysiologic deficits such as reduced long-term potentiation. In addition, neuroplastin-deficient mice reveal profound physiologic and behavioral deficits, some of which are related to depression and schizophrenia, which illustrate neuroplastin's essential functions. CONCLUSIONS: Neuroplastins are essential for learning and memory. Retrograde amnesia after an associative learning task can be induced by ablation of the neuroplastin gene. The inducible neuroplastin-deficient mouse model provides a new and unique means to analyze the molecular and cellular mechanisms underlying retrograde amnesia and memory.


Assuntos
Amnésia Retrógrada/fisiopatologia , Aprendizagem por Associação/fisiologia , Glicoproteínas de Membrana/fisiologia , Memória/fisiologia , Amnésia Retrógrada/genética , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Potenciais Pós-Sinápticos Excitadores , Medo/fisiologia , Hipocampo/fisiologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa