RESUMO
Dynamic changes in protein-protein interaction (PPI) networks underlie all physiological cellular functions and drive devastating human diseases. Profiling PPI networks can, therefore, provide critical insight into disease mechanisms and identify new drug targets. Kinases are regulatory nodes in many PPI networks; yet, facile methods to systematically study kinase interactome dynamics are lacking. We describe kinobead competition and correlation analysis (kiCCA), a quantitative mass spectrometry-based chemoproteomic method for rapid and highly multiplexed profiling of endogenous kinase interactomes. Using kiCCA, we identified 1,154 PPIs of 238 kinases across 18 diverse cancer lines, quantifying context-dependent kinase interactome changes linked to cancer type, plasticity, and signaling states, thereby assembling an extensive knowledgebase for cell signaling research. We discovered drug target candidates, including an endocytic adapter-associated kinase (AAK1) complex that promotes cancer cell epithelial-mesenchymal plasticity and drug resistance. Our data demonstrate the importance of kinase interactome dynamics for cellular signaling in health and disease.
Assuntos
Neoplasias , Humanos , Transdução de Sinais , Mapas de Interação de ProteínasRESUMO
Multiple layers of regulation modulate the activity and localization of protein kinases. However, many details of kinase regulation remain incompletely understood. Here, we apply saturation mutagenesis and a chemical genetic method for allosterically modulating kinase global conformation to Src kinase, providing insight into known regulatory mechanisms and revealing a previously undiscovered interaction between Src's SH4 and catalytic domains. Abrogation of this interaction increased phosphotransferase activity, promoted membrane association, and provoked phosphotransferase-independent alterations in cell morphology. Thus, Src's SH4 domain serves as an intramolecular regulator coupling catalytic activity, global conformation, and localization, as well as mediating a phosphotransferase-independent function. Sequence conservation suggests that the SH4 domain regulatory interaction exists in other Src-family kinases. Our combined approach's ability to reveal a regulatory mechanism in one of the best-studied kinases suggests that it could be applied broadly to provide insight into kinase structure, regulation, and function.
Assuntos
Domínio Catalítico/genética , Mutagênese/genética , Conformação Proteica , Quinases da Família src/química , Regulação Alostérica/genética , Membrana Celular/química , Membrana Celular/enzimologia , Células HEK293 , Humanos , Fosforilação , Quinases da Família src/genéticaRESUMO
BACKGROUND: HCC incidence is increasing worldwide due to the obesity epidemic, which drives metabolic dysfunction-associated steatohepatitis (MASH) that can lead to HCC. However, the molecular pathways driving MASH-HCC are poorly understood. We have previously reported that male mice with haploinsufficiency of hypoxia-associated factor, HAF (SART1+/-) spontaneously develop MASH-HCC. However, the cell type(s) responsible for HCC associated with HAF loss are unclear. RESULTS: We generated SART1-floxed mice, which were crossed with mice expressing Cre-recombinase within hepatocytes (Alb-Cre; hepS-/-) or myeloid cells (LysM-Cre, macS-/-). HepS-/- mice (both male and female) developed HCC associated with profound inflammatory and lipid dysregulation suggesting that HAF protects against HCC primarily within hepatocytes. HAF-deficient hepatocytes showed decreased P-p65 and P-p50 and in many components of the NF-κB pathway, which was recapitulated using HAF siRNA in vitro. HAF depletion also triggered apoptosis, suggesting that HAF protects against HCC by suppressing hepatocyte apoptosis. We show that HAF regulates NF-κB activity by regulating transcription of TRADD and RIPK1. Mice fed a high-fat diet (HFD) showed marked suppression of HAF, P-p65 and TRADD within their livers after 26 weeks, but showed profound upregulation of these proteins after 40 weeks, implicating deregulation of the HAF-NF-κB axis in the progression to MASH. In humans, HAF was significantly decreased in livers with simple steatosis but significantly increased in HCC compared with normal liver. CONCLUSIONS: HAF is novel transcriptional regulator of the NF-κB pathway and is a key determinant of cell fate during progression to MASH and MASH-HCC.
RESUMO
In recent years, highly sensitive mass spectrometry-based phosphoproteomic analysis is beginning to be applied to identification of protein kinase substrates altered downstream of increased cAMP. Such studies identify a very large number of phosphorylation sites regulated in response to increased cAMP. Therefore, we now are tasked with the challenge of determining how many of these altered phosphorylation sites are relevant to regulation of function in the cell. This minireview describes the use of phosphoproteomic analysis to monitor the effects of cyclic nucleotide phosphodiesterase (PDE) inhibitors on cAMP-dependent phosphorylation events. More specifically, it describes two examples of this approach carried out in the authors' laboratories using the selective PDE inhibitor approach. After a short discussion of several likely conclusions suggested by these analyses of cAMP function in steroid hormone-producing cells and also in T-cells, it expands into a discussion about some newer and more speculative interpretations of the data. These include the idea that multiple phosphorylation sites and not a single rate-limiting step likely regulate these and, by analogy, many other cAMP-dependent pathways. In addition, the idea that meaningful regulation requires a high stoichiometry of phosphorylation to be important is discussed and suggested to be untrue in many instances. These new interpretations have important implications for drug design, especially for targeting pathway agonists. SIGNIFICANCE STATEMENT: Phosphoproteomic analyses identify thousands of altered phosphorylation sites upon drug treatment, providing many possible regulatory targets but also highlighting questions about which phosphosites are functionally important. These data imply that multistep processes are regulated by phosphorylation at not one but rather many sites. Most previous studies assumed a single step or very few rate-limiting steps were changed by phosphorylation. This concept should be changed. Previous interpretations also assumed substoichiometric phosphorylation was not of regulatory importance. This assumption also should be changed.
Assuntos
AMP Cíclico/metabolismo , Fosforilação/fisiologia , Proteoma/metabolismo , Animais , Humanos , Proteômica/métodos , Transdução de Sinais/fisiologiaRESUMO
Kinase-catalyzed protein phosphorylation is fundamental to eukaryotic signal transduction, regulating most cellular processes. Kinases are frequently dysregulated in cancer, inflammation, and degenerative diseases, and because they can be inhibited with small molecules, they became important drug targets. Accordingly, analytical approaches that determine kinase activation states are critically important to understand kinase-dependent signal transduction and to identify novel drug targets and predictive biomarkers. Multiplexed inhibitor beads (MIBs or kinobeads) efficiently enrich kinases from cell lysates for liquid chromatography-mass spectrometry (LC-MS) analysis. When combined with phosphopeptide enrichment, kinobead/LC-MS can also quantify the phosphorylation state of kinases, which determines their activation state. However, an efficient kinobead/LC-MS kinase phospho-profiling protocol that allows routine analyses of cell lines and tissues has not yet been developed. Here, we present a facile workflow that quantifies the global phosphorylation state of kinases with unprecedented sensitivity. We also found that our kinobead/LC-MS protocol can measure changes in kinase complex composition and show how these changes can indicate kinase activity. We demonstrate the utility of our approach in specifying kinase signaling pathways that control the acute steroidogenic response in Leydig cells; this analysis establishes the first comprehensive framework for the post-translational control of steroid biosynthesis.
Assuntos
Transdução de Sinais , Espectrometria de Massas em Tandem , Cromatografia Líquida , Humanos , Masculino , Fosforilação , Proteínas Quinases/metabolismoRESUMO
Breast cancer screening and new precision therapies have led to improved patient outcomes. Yet, a positive prognosis is less certain when primary tumors metastasize. Metastasis requires a coordinated program of cellular changes that promote increased survival, migration, and energy consumption. These pathways converge on mitochondrial function, where distinct signaling networks of kinases, phosphatases, and metabolic enzymes regulate these processes. The protein kinase A-anchoring protein dAKAP1 compartmentalizes protein kinase A (PKA) and other signaling enzymes at the outer mitochondrial membrane and thereby controls mitochondrial function and dynamics. Modulation of these processes occurs in part through regulation of dynamin-related protein 1 (Drp1). Here, we report an inverse relationship between the expression of dAKAP1 and mesenchymal markers in breast cancer. Molecular, cellular, and in silico analyses of breast cancer cell lines confirmed that dAKAP1 depletion is associated with impaired mitochondrial function and dynamics, as well as with increased glycolytic potential and invasiveness. Furthermore, disruption of dAKAP1-PKA complexes affected cell motility and mitochondrial movement toward the leading edge in invasive breast cancer cells. We therefore propose that depletion of dAKAP1-PKA "signaling islands" from the outer mitochondrial membrane augments progression toward metastatic breast cancer.
Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Membranas Mitocondriais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Mesoderma/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial , Invasividade NeoplásicaRESUMO
Specific functions for different cyclic nucleotide phosphodiesterases (PDEs) have not yet been identified in most cell types. Conventional approaches to study PDE function typically rely on measurements of global cAMP, general increases in cAMP-dependent protein kinase (PKA), or the activity of exchange protein activated by cAMP (EPAC). Although newer approaches using subcellularly targeted FRET reporter sensors have helped define more compartmentalized regulation of cAMP, PKA, and EPAC, they have limited ability to link this regulation to downstream effector molecules and biological functions. To address this problem, we have begun to use an unbiased mass spectrometry-based approach coupled with treatment using PDE isozyme-selective inhibitors to characterize the phosphoproteomes of the functional pools of cAMP/PKA/EPAC that are regulated by specific cAMP-PDEs (the PDE-regulated phosphoproteomes). In Jurkat cells we find multiple, distinct PDE-regulated phosphoproteomes that can be defined by their responses to different PDE inhibitors. We also find that little phosphorylation occurs unless at least two different PDEs are concurrently inhibited in these cells. Moreover, bioinformatics analyses of these phosphoproteomes provide insight into the unique functional roles, mechanisms of action, and synergistic relationships among the different PDEs that coordinate cAMP-signaling cascades in these cells. The data strongly suggest that the phosphorylation of many different substrates contributes to cAMP-dependent regulation of these cells. The findings further suggest that the approach of using selective, inhibitor-dependent phosphoproteome analysis can provide a generalized methodology for understanding the roles of different PDEs in the regulation of cyclic nucleotide signaling.
Assuntos
3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Fosfoproteínas/metabolismo , Linfócitos T/metabolismo , Algoritmos , Humanos , Células Jurkat , Redes e Vias MetabólicasRESUMO
Luteinizing hormone (LH) stimulates steroidogenesis largely through a surge in cyclic AMP (cAMP). Steroidogenic rates are also critically dependent on the availability of cholesterol at mitochondrial sites of synthesis. This cholesterol is provided by cellular uptake of lipoproteins, mobilization of intracellular lipid, and de novo synthesis. Whether and how these pathways are coordinated by cAMP are poorly understood. Recent phosphoproteomic analyses of cAMP-dependent phosphorylation sites in MA10 Leydig cells suggested that cAMP regulates multiple steps in these processes, including activation of the SCAP/SREBP pathway. SCAP [sterol-regulatory element-binding protein (SREBP) cleavage-activating protein] acts as a cholesterol sensor responsible for regulating intracellular cholesterol balance. Its role in cAMP-mediated control of steroidogenesis has not been explored. We used two CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR associated protein 9) knockout approaches to test the role of SCAP in steroidogenesis. Our results demonstrate that SCAP is required for progesterone production induced by concurrent inhibition of the cAMP phosphodiesterases PDE4 and PDE8. These inhibitors increased SCAP phosphorylation, SREBP2 activation, and subsequent expression of cholesterol biosynthetic genes, whereas SCAP deficiency largely prevented these effects. Reexpression of SCAP in SCAP-deficient cells restored SREBP2 protein expression and partially restored steroidogenic responses, confirming the requirement of SCAP-SREBP2 in steroidogenesis. Inhibitors of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase and isoprenylation attenuated, whereas exogenously provided cholesterol augmented, PDE inhibitor-induced steroidogenesis, suggesting that the cholesterol substrate needed for steroidogenesis is provided by both de novo synthesis and isoprenylation-dependent mechanisms. Overall, these results demonstrate a novel role for LH/cAMP in SCAP/SREBP activation and subsequent regulation of steroidogenesis.
Assuntos
AMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Esteroides/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Proteínas de Transporte , Colesterol/metabolismo , Regulação da Expressão Gênica , Hidroximetilglutaril-CoA Redutases/efeitos dos fármacos , Hidroximetilglutaril-CoA Redutases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células Intersticiais do Testículo/metabolismo , Lipoproteínas/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Proteínas de Membrana/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação , Esteroides/química , Proteína de Ligação a Elemento Regulador de Esterol 2/genéticaRESUMO
ATP-competitive protein kinase inhibitors are important research tools and therapeutic agents. Because there are >500 human kinases that contain highly conserved active sites, the development of selective inhibitors is extremely challenging. Methods to rapidly and efficiently profile kinase inhibitor targets in cell lysates are urgently needed to discover selective compounds and to elucidate the mechanisms of action for polypharmacological inhibitors. Here, we describe a protocol for microgram-scale chemoproteomic profiling of ATP-competitive kinase inhibitors using kinobeads. We employed a gel-free in situ digestion protocol coupled to nanoflow liquid chromatography-mass spectrometry to profile â¼200 kinases in single analytical runs using as little as 5 µL of kinobeads and 300 µg of protein. With our kinobead reagents, we obtained broad coverage of the kinome, monitoring the relative expression levels of 312 kinases in a diverse panel of 11 cancer cell lines. Further, we profiled a set of pyrrolopyrimidine- and pyrazolopyrimidine-based kinase inhibitors in competition-binding experiments with label-free quantification, leading to the discovery of a novel selective and potent inhibitor of protein kinase D (PKD) 1, 2, and 3. Our protocol is useful for rapid and sensitive profiling of kinase expression levels and ATP-competitive kinase inhibitor selectivity in native proteomes.
Assuntos
Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/análise , Proteômica/métodos , Antineoplásicos , Ligação Competitiva , Linhagem Celular Tumoral , Cromatografia Líquida , Humanos , Espectrometria de Massas/métodos , Proteínas Quinases/análise , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Frações Subcelulares/químicaRESUMO
In the present work, we describe a convenient synthesis of spiro-fused D-fructo- and D-psico-configurated oxazoline ligands and their application in asymmetric catalysis. The ligands were synthesized from readily available 3,4,5-tri-O-benzyl-1,2-O-isopropylidene-ß-D-fructopyranose and 3,4,5-tri-O-benzyl-1,2-O-isopropylidene-ß-D-psicopyranose, respectively. The latter compounds were partially deprotected under acidic conditions followed by condensation with thiocyanic acid to give an anomeric mixture of the corresponding 1,3-oxazolidine-2-thiones. The anomeric 1,3-oxazolidine-2-thiones were separated after successive benzylation, fully characterized and subjected to palladium catalyzed Suzuki-Miyaura coupling with 2-pyridineboronic acid N-phenyldiethanolamine ester to give the corresponding 2-pyridyl spiro-oxazoline (PyOx) ligands. The spiro-oxazoline ligands showed high asymmetric induction (up to 93% ee) when applied as chiral ligands in palladium-catalyzed allylic alkylation of 1,3-diphenylallyl acetate with dimethyl malonate. The D-fructo-PyOx ligand provided mainly the (R)-enantiomer while the D-psico-configurated ligand gave the (S)-enantiomer with a lower enantiomeric excess.
RESUMO
Stable isotope labeling is widely used to encode and quantify proteins in mass-spectrometry-based proteomics. We compared metabolic labeling with stable isotope labeling by amino acids in cell culture (SILAC) and chemical labeling by stable isotope dimethyl labeling and find that they have comparable accuracy and quantitative dynamic range in unfractionated proteome analyses and affinity pull-down experiments. Analyzing SILAC- and dimethyl-labeled samples together in single liquid chromatography-mass spectrometric analyses minimizes differences under analytical conditions, allowing comparisons of quantitative errors introduced during sample processing. We find that SILAC is more reproducible than dimethyl labeling. Because proteins from metabolically labeled populations can be combined before proteolytic digestion, SILAC is particularly suited to studies with extensive sample processing, such as fractionation and enrichment of peptides with post-translational modifications. We compared both methods in pull-down experiments using a kinase inhibitor, dasatinib, and tagged GRB2-SH2 protein as affinity baits. We describe a StageTip dimethyl-labeling protocol that we applied to in-solution and in-gel protein digests. Comparing the impact of post-digest isotopic labeling on quantitative accuracy, we demonstrate how specific experimental designs can benefit most from metabolic labeling approaches like SILAC and situations where chemical labeling by stable isotope-dimethyl labeling can be a practical alternative.
Assuntos
Marcação por Isótopo/métodos , Proteoma/análise , Proteômica/métodos , Aminoácidos/química , Aminoácidos/metabolismo , Células HeLa , Humanos , Modelos Químicos , Proteínas/análise , Proteínas/química , Proteínas/metabolismo , Proteoma/química , Proteoma/metabolismoRESUMO
The DNAJ-PKAc fusion kinase is a defining feature of fibrolamellar carcinoma (FLC). FLC tumors are notoriously resistant to standard chemotherapies, with aberrant kinase activity assumed to be a contributing factor. By combining proximity proteomics, biochemical analyses, and live-cell photoactivation microscopy, we demonstrate that DNAJ-PKAc is not constrained by A-kinase anchoring proteins. Consequently, the fusion kinase phosphorylates a unique array of substrates, including proteins involved in translation and the anti-apoptotic factor Bcl-2-associated athanogene 2 (BAG2), a co-chaperone recruited to the fusion kinase through association with Hsp70. Tissue samples from patients with FLC exhibit increased levels of BAG2 in primary and metastatic tumors. Furthermore, drug studies implicate the DNAJ-PKAc/Hsp70/BAG2 axis in potentiating chemotherapeutic resistance. We find that the Bcl-2 inhibitor navitoclax enhances sensitivity to etoposide-induced apoptosis in cells expressing DNAJ-PKAc. Thus, our work indicates BAG2 as a marker for advanced FLC and a chemotherapeutic resistance factor in DNAJ-PKAc signaling scaffolds.
Assuntos
Carcinoma Hepatocelular , Humanos , Sobrevivência Celular , Carcinoma Hepatocelular/tratamento farmacológico , Apoptose , Proteínas de Choque Térmico HSP70 , Proteínas Proto-Oncogênicas c-bcl-2 , Chaperonas MolecularesRESUMO
Background: Hepatocellular carcinoma (HCC) incidence is increasing worldwide due to the obesity epidemic, which drives metabolic dysfunction-associated steatohepatitis (MASH) that can lead to HCC. However, the molecular pathways that lead to MASH-HCC are poorly understood. We have previously reported that male mice with global haploinsufficiency of hypoxia-associated factor, HAF ( SART1 +/ - ) spontaneously develop MASH/HCC. However, the cell type(s) responsible for HCC associated with HAF loss are unclear. Results: SART1 -floxed mice were crossed with mice expressing Cre-recombinase within hepatocytes (Alb-Cre; hepS -/- ) or macrophages (LysM-Cre, macS -/- ). Only hepS -/- mice (both male and female) developed HCC suggesting that HAF protects against HCC primarily within hepatocytes. HAF-deficient macrophages showed decreased P-p65 and P-p50 and in many major components of the NF-κB pathway, which was recapitulated using HAF siRNA in vitro . HAF depletion increased apoptosis both in vitro and in vivo , suggesting that HAF mediates a tumor suppressor role by suppressing hepatocyte apoptosis. We show that HAF regulates NF-κB activity by controlling transcription of TRADD and RIPK1 . Mice fed a high-fat diet (HFD) showed marked suppression of HAF, P-p65 and TRADD within their livers after 26 weeks, but manifest profound upregulation of HAF, P-65 and TRADD within their livers after 40 weeks of HFD, implicating deregulation of the HAF-NF-κB axis in the progression to MASH. In humans, HAF was significantly decreased in livers with simple steatosis but significantly increased in HCC compared to normal liver. Conclusions: HAF is novel transcriptional regulator of the NF-κB pathway that protects against hepatocyte apoptosis and is a key determinant of cell fate during progression to MASH and MASH-HCC.
RESUMO
Mutant protein kinase A catalytic subunit (PKAc) drives adrenal Cushing's syndrome, though its signaling interactions remain unclear. This protocol details steps to use live-cell proximity labeling to identify subcellular compartments and proteins closely associated with variants of PKAc in human adrenal cells. We include instructions for clonal cell line generation, live biotin labeling of proximal proteins, isolation of biotinylated proteins, and sample processing for proteomic analysis using the biotin ligase miniTurbo with wild-type and mutant PKAc.1,2 For complete details on the use and execution of this protocol, please refer to Omar et al. (2022).3.
Assuntos
Biotina , Proteômica , Humanos , Biotina/metabolismo , Domínio Catalítico , Biotinilação , Proteômica/métodos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismoRESUMO
The DNAJ-PKAc fusion kinase is a defining feature of the adolescent liver cancer fibrolamellar carcinoma (FLC). A single lesion on chromosome 19 generates this mutant kinase by creating a fused gene encoding the chaperonin binding domain of Hsp40 (DNAJ) in frame with the catalytic core of protein kinase A (PKAc). FLC tumors are notoriously resistant to standard chemotherapies. Aberrant kinase activity is assumed to be a contributing factor. Yet recruitment of binding partners, such as the chaperone Hsp70, implies that the scaffolding function of DNAJ- PKAc may also underlie pathogenesis. By combining proximity proteomics with biochemical analyses and photoactivation live-cell imaging we demonstrate that DNAJ-PKAc is not constrained by A-kinase anchoring proteins. Consequently, the fusion kinase phosphorylates a unique array of substrates. One validated DNAJ-PKAc target is the Bcl-2 associated athanogene 2 (BAG2), a co-chaperone recruited to the fusion kinase through association with Hsp70. Immunoblot and immunohistochemical analyses of FLC patient samples correlate increased levels of BAG2 with advanced disease and metastatic recurrences. BAG2 is linked to Bcl-2, an anti-apoptotic factor that delays cell death. Pharmacological approaches tested if the DNAJ- PKAc/Hsp70/BAG2 axis contributes to chemotherapeutic resistance in AML12 DNAJ-PKAc hepatocyte cell lines using the DNA damaging agent etoposide and the Bcl-2 inhibitor navitoclax. Wildtype AML12 cells were susceptible to each drug alone and in combination. In contrast, AML12 DNAJ-PKAc cells were moderately affected by etoposide, resistant to navitoclax, but markedly susceptible to the drug combination. These studies implicate BAG2 as a biomarker for advanced FLC and a chemotherapeutic resistance factor in DNAJ-PKAc signaling scaffolds.
RESUMO
A photolabile o-nitrobenzyl linker-cyclooctyne conjugate was prepared, immobilized on poly(methacrylate) beads and utilized as a trap for azide-functionalized compounds. These could be released by 365 nm UV light irradiation in high yield and purity. The "reagent-free" and time economic catch and release protocol was deemed useful for chemical proteomics applications.
Assuntos
Alcinos/química , Azidas/química , Estrutura Molecular , Processos Fotoquímicos , Raios UltravioletaRESUMO
Mutations in the catalytic subunit of protein kinase A (PKAc) drive the stress hormone disorder adrenal Cushing's syndrome. We define mechanisms of action for the PKAc-L205R and W196R variants. Proximity proteomic techniques demonstrate that both Cushing's mutants are excluded from A kinase-anchoring protein (AKAP)-signaling islands, whereas live-cell photoactivation microscopy reveals that these kinase mutants indiscriminately diffuse throughout the cell. Only cAMP analog drugs that displace native PKAc from AKAPs enhance cortisol release. Rescue experiments that incorporate PKAc mutants into AKAP complexes abolish cortisol overproduction, indicating that kinase anchoring restores normal endocrine function. Analyses of adrenal-specific PKAc-W196R knockin mice and Cushing's syndrome patient tissue reveal defective signaling mechanisms of the disease. Surprisingly each Cushing's mutant engages a different mitogenic-signaling pathway, with upregulation of YAP/TAZ by PKAc-L205R and ERK kinase activation by PKAc-W196R. Thus, aberrant spatiotemporal regulation of each Cushing's variant promotes the transmission of distinct downstream pathogenic signals.
Assuntos
Síndrome de Cushing , Animais , Domínio Catalítico/genética , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hidrocortisona/metabolismo , Camundongos , ProteômicaRESUMO
Starting from 2-(triphenylsilyl)ethanol a new oxycarbonyl protecting group cleavable by fluoride ion induced Peterson-elimination has been developed. Known 2-(triphenylsilyl)ethanol has been prepared from commercially available triphenylvinyl-silane by a hydroboration-oxidation sequence using the sterically hindered borane reagent 9-BBN. The silyl alcohol was subsequently transformed into its chloroformate, imidazolylcarboxylic acid ester and p-nitrophenyl carbonate and used in standard protocols for the formation of carbamates and carbonates. The Tpseoc group proved to be highly resistant against acidic conditions applied in removal of tert-butyl esters and the t-Boc-group. It also withstood catalytic hydrogenation, treatment with morpholine, methylhydrazine and Pd-reagents/allyl-scavanger combinations, conditions required to cleave Cbz-, Fmoc-, phthalimide- and Alloc-groups. The Tpseoc-group is cleaved upon treatment with TBAF/CsF at 0 °C or r.t. with cleavage times reaching from.
Assuntos
Aminoácidos/química , Química Orgânica , Fluoretos/química , Silício/química , Aminoácidos/síntese químicaRESUMO
The ever-increasing size and scale of biological information have popularized network-based approaches as a means to interpret these data. We develop a network propagation method that integrates kinase-inhibitor-focused functional screens with known protein-protein interactions (PPIs). This method, dubbed KiRNet, uses an a priori edge-weighting strategy based on node degree to establish a pipeline from a kinase inhibitor screen to the generation of a predictive PPI subnetwork. We apply KiRNet to uncover molecular regulators of mesenchymal cancer cells driven by overexpression of Frizzled 2 (FZD2). KiRNet produces a network model consisting of 166 high-value proteins. These proteins exhibit FZD2-dependent differential phosphorylation, and genetic knockdown studies validate their role in maintaining a mesenchymal cell state. Finally, analysis of clinical data shows that mesenchymal tumors exhibit significantly higher average expression of the 166 corresponding genes than epithelial tumors for nine different cancer types.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologiaRESUMO
Hepatocellular carcinoma (HCC) is a complex and deadly disease lacking druggable genetic mutations. The limited efficacy of systemic treatments for advanced HCC implies that predictive biomarkers and drug targets are urgently needed. Most HCC drugs target protein kinases, indicating that kinase-dependent signaling networks drive HCC progression. To identify HCC signaling networks that determine responses to kinase inhibitors (KIs), we apply a pharmacoproteomics approach integrating kinome activity in 17 HCC cell lines with their responses to 299 KIs, resulting in a comprehensive dataset of pathway-based drug response signatures. By profiling patient HCC samples, we identify signatures of clinical HCC drug responses in individual tumors. Our analyses reveal kinase networks promoting the epithelial-mesenchymal transition (EMT) and drug resistance, including a FZD2-AXL-NUAK1/2 signaling module, whose inhibition reverses the EMT and sensitizes HCC cells to drugs. Our approach identifies cancer drug targets and molecular signatures of drug response for personalized oncology.