Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Bull Math Biol ; 83(4): 36, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33646415

RESUMO

The ecological and human health impact of antibiotic use and the related antimicrobial resistance (AMR) in animal husbandry is poorly understood. In many countries, there has been considerable pressure to reduce overall antibiotic use in agriculture or to cease or minimise use of human critical antibiotics. However, a more nuanced approach would consider the differential impact of use of different antibiotic classes; for example, it is not known whether reduced use of bacteriostatic or bacteriolytic classes of antibiotics would be of greater value. We have developed an ordinary differential equation model to investigate the effects of farm practice on the spread and persistence of AMR in the dairy slurry tank environment. We model the chemical fate of bacteriolytic and bacteriostatic antibiotics within the slurry and their effect on a population of bacteria, which are capable of resistance to both types of antibiotic. Through our analysis, we find that changing the rate at which a slurry tank is emptied may delay the proliferation of multidrug-resistant bacteria by up to five years depending on conditions. This finding has implications for farming practice and the policies that influence waste management practices. We also find that, within our model, the development of multidrug resistance is particularly sensitive to the use of bacteriolytic antibiotics, rather than bacteriostatic antibiotics, and this may be cause for controlling the usage of bacteriolytic antibiotics in agriculture.


Assuntos
Criação de Animais Domésticos , Indústria de Laticínios , Farmacorresistência Bacteriana , Modelos Biológicos , Criação de Animais Domésticos/métodos , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Indústria de Laticínios/métodos , Fazendas/estatística & dados numéricos , Reino Unido
2.
J Hazard Mater ; 473: 134591, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761763

RESUMO

Selenium (Se(VI)) is environmentally toxic. One of the most popular reducing agents for Se(VI) remediation is zero-valent iron (ZVI). However, most ZVI studies were carried out in water matrices, and the recovery of reduced Se has not been investigated. A water-sediment system constructed using natural sediment was employed here to study in-situ Se remediation and recovery. A combined effect of ZVI and unacclimated microorganisms from natural sediment was found in Se(VI) removal in the water phase with a removal efficiency of 92.7 ± 1.1% within 7 d when 10 mg L-1 Se(VI) was present. Soluble Se(VI) was removed from the water and precipitated to the sediment phase (74.8 ± 0.1%), which was enhanced by the addition of ZVI (83.3 ± 0.3%). The recovery proportion of the immobilized Se was 34.2 ± 0.1% and 92.5 ± 0.2% through wet and dry magnetic separation with 1 g L-1 ZVI added, respectively. The 16 s rRNA sequencing revealed the variations in the microbial communities in response to ZVI and Se, which the magnetic separation could potentially mitigate in the long term. This study provides a novel technique to achieve in-situ Se remediation and recovery by combining ZVI reduction and magnetic separation.


Assuntos
Sedimentos Geológicos , Ferro , Selênio , Poluentes Químicos da Água , Selênio/química , Ferro/química , Poluentes Químicos da Água/química , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/genética , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Fenômenos Magnéticos
3.
PLoS One ; 19(5): e0303529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809825

RESUMO

Wastewater-based epidemiology (WBE) has emerged as an effective environmental surveillance tool for predicting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease outbreaks in high-income countries (HICs) with centralized sewage infrastructure. However, few studies have applied WBE alongside epidemic disease modelling to estimate the prevalence of SARS-CoV-2 in low-resource settings. This study aimed to explore the feasibility of collecting untreated wastewater samples from rural and urban catchment areas of Nagpur district, to detect and quantify SARS-CoV-2 using real-time qPCR, to compare geographic differences in viral loads, and to integrate the wastewater data into a modified Susceptible-Exposed-Infectious-Confirmed Positives-Recovered (SEIPR) model. Of the 983 wastewater samples analyzed for SARS-CoV-2 RNA, we detected significantly higher sample positivity rates, 43.7% (95% confidence interval (CI) 40.1, 47.4) and 30.4% (95% CI 24.66, 36.66), and higher viral loads for the urban compared with rural samples, respectively. The Basic reproductive number, R0, positively correlated with population density and negatively correlated with humidity, a proxy for rainfall and dilution of waste in the sewers. The SEIPR model estimated the rate of unreported coronavirus disease 2019 (COVID-19) cases at the start of the wave as 13.97 [95% CI (10.17, 17.0)] times that of confirmed cases, representing a material difference in cases and healthcare resource burden. Wastewater surveillance might prove to be a more reliable way to prepare for surges in COVID-19 cases during future waves for authorities.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Índia/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/diagnóstico , Humanos , Águas Residuárias/virologia , SARS-CoV-2/isolamento & purificação , Carga Viral , Pandemias , Vigilância Epidemiológica Baseada em Águas Residuárias , Esgotos/virologia
4.
Water Res ; 238: 119903, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37121200

RESUMO

Wastewater reuse for agricultural irrigation is a widespread beneficial practice, in line with the sustainable development goals. However, contaminants of emerging concern (CECs) present in wastewater, such as pharmaceuticals, pose an environmental risk. The Tula Valley in Mexico is one of the world's largest agricultural areas reusing wastewater for agriculture. However, no untargeted CEC monitoring has been undertaken there, limiting the information available to prioritise local environmental risk assessment. Furthermore, CEC environmental presence in the Global South remains understudied, compared to the Global North. There is a risk that current research efforts focus on CECs predominantly found in the Global North, leading to strategies that may not be appropriate for the Global South where the pollution profile may be different. To address these knowledge gaps, a sampling campaign at five key sites in the Tula Valley was undertaken and samples analysed using multi-residue targeted and untargeted liquid chromatography mass spectrometry methods. Using the targeted data, ten CECs were found to be of environmental risk for at least one sampling site: 4­tert-octylphenol, acetaminophen, bezafibrate, diclofenac, erythromycin, levonorgestrel, simvastatin, sulfamethoxazole, trimethoprim and tramadol as well as total estrogenicity (combination of three steroid hormones). Six of these have not been previously quantified in the Tula Valley. Over one hundred pollutants never previously measured in the area were identified through untargeted analysis supported by library spectrum match. Examples include diclofenac and carbamazepine metabolites and area-specific pollutants such as the herbicide fomesafen. This research contributes to characterising the presence of CECs in the Global South, as well as providing site-specific data for the Tula Valley.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Poluentes Ambientais/análise , México , Desenvolvimento Sustentável , Diclofenaco , Poluentes Químicos da Água/análise , Agricultura , Monitoramento Ambiental
5.
Lancet Reg Health Southeast Asia ; 14: 100205, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37193348

RESUMO

Background: The COVID-19 pandemic showcased the power of genomic sequencing to tackle the emergence and spread of infectious diseases. However, metagenomic sequencing of total microbial RNAs in wastewater has the potential to assess multiple infectious diseases simultaneously and has yet to be explored. Methods: A retrospective RNA-Seq epidemiological survey of 140 untreated composite wastewater samples was performed across urban (n = 112) and rural (n = 28) areas of Nagpur, Central India. Composite wastewater samples were prepared by pooling 422 individual grab samples collected prospectively from sewer lines of urban municipality zones and open drains of rural areas from 3rd February to 3rd April 2021, during the second COVID-19 wave in India. Samples were pre-processed and total RNA was extracted prior to genomic sequencing. Findings: This is the first study that has utilised culture and/or probe-independent unbiased RNA-Seq to examine Indian wastewater samples. Our findings reveal the detection of zoonotic viruses including chikungunya, Jingmen tick and rabies viruses, which have not previously been reported in wastewater. SARS-CoV-2 was detectable in 83 locations (59%), with stark abundance variations observed between sampling sites. Hepatitis C virus was the most frequently detected infectious virus, identified in 113 locations and co-occurring 77 times with SARS-CoV-2; and both were more abundantly detected in rural areas than urban zones. Concurrent identification of segmented virus genomic fragments of influenza A virus, norovirus, and rotavirus was observed. Geographical differences were also observed for astrovirus, saffold virus, husavirus, and aichi virus that were more prevalent in urban samples, while the zoonotic viruses chikungunya and rabies, were more abundant in rural environments. Interpretation: RNA-Seq can effectively detect multiple infectious diseases simultaneously, facilitating geographical and epidemiological surveys of endemic viruses that could help direct healthcare interventions against emergent and pre-existent infectious diseases as well as cost-effectively and qualitatively characterising the health status of the population over time. Funding: UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) grant number H54810, as supported by Research England.

6.
J Hazard Mater ; 427: 128122, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34979385

RESUMO

Selenium (Se) is an essential element with application in manufacturing from food to medical industries. Water contamination by Se is of concern due to anthropogenic activities. Recently, Se remediation has received increasing attention. Hence, different types of remediation techniques are listed in this work, and their potential for Se recovery is evaluated. Sorption, co-precipitation, coagulation and precipitation are effective for low-cost Se removal. In photocatalytic, zero-valent iron and electrochemical systems, the above mechanisms occur with reduction as an immobilization and detoxification process. In combination with magnetic separation, the above techniques are promising for Se recovery. Biological Se oxyanions reduction has been widely recognized as a cost-effective method for Se remediation, simultaneously generating biosynthetic Se nanoparticles (BioSeNPs). Increasing the extracellular production of BioSeNPs and controlling their morphology will benefit its recovery. However, the mechanism of the microbial production of BioSeNPs is not well understood. Se containing products from both microbial reduction and abiotic methods need to be refined to obtain pure Se. Eco-friendly and cost-effective Se refinery methods need to be developed. Overall, this review offers insight into the necessity of shifting attention from Se remediation to Se recovery.


Assuntos
Selênio , Ferro , Magnetismo
7.
Sci Total Environ ; 812: 151440, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742971

RESUMO

Recent research on the magnetisation of biochar, a carbon-based material that can be used as a sorbent, has opened novel opportunities in the field of environmental remediation, as incorporating magnetic particles into biochar can simplify subsequent separation. This could offer a sustainable circular economy-based solution in two areas of waste management; firstly, pyrolysis of agricultural waste for magnetic biochar synthesis could reduce greenhouse gas emissions derived from traditional agricultural waste processing, such as landfill and incineration, while secondly, application of magnetic biochar to remove excess nitrogen from soils (made possible through magnetic separation) could provide opportunities for this pollutant to be used as a recycled fertiliser. While sorption of pollutants by magnetic biochar has been researched in wastewater, few studies have investigated magnetic biochar use in polluted soils. Nitrogen pollution (e.g. NH4+), stemming from agricultural fertiliser management, is a major environmental and economic issue that could be significantly reduced before losses from soils occur. This review demonstrates that the use of magnetic biochar tailored to NH4+ adsorption has potential to remove (and recycle for reuse) excess nitrogen from soils. Analysis of research into recovery of NH4+ by sorption/desorption, biochar magnetisation and biochar-soil interactions, suggests that this is a promising application, but a more cohesive, interdisciplinary approach is called for to elucidate its feasibility. Furthermore, research shows variable impacts of biochar upon soil chemistry and biology, such as pH and microbial diversity. Considering wide concerns surrounding global biodiversity depletion, a more comprehensive understanding of biochar-soil dynamics is required to protect and support soil ecosystems. Finally, addressing research gaps, such as optimisation and scaling-up of magnetic biochar synthesis, would benefit from systems thinking approaches, ensuring the many complex considerations across science, industry, policy and economics are connected by circular-economy principles.


Assuntos
Compostos de Amônio , Poluentes do Solo , Carvão Vegetal , Ecossistema , Fenômenos Magnéticos , Solo
8.
Chemosphere ; 305: 135031, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35605731

RESUMO

Treated and untreated wastewater is often used for agricultural irrigation and, despite the many benefits of this practice, it poses the risk of biologically active chemical pollutants (such as pharmaceuticals, like tramadol) entering the environment. The partitioning of tramadol between soil/water at environmentally relevant concentrations is important to understand its environmental toxicity. Kinetics and isotherm sorption studies based on the Organisation for Economic Cooperation and Development (OECD) 106 Guideline were undertaken, ensuring comparability to previous studies. Studies were undertaken in three soils of different characteristics using aqueous concentrations of tramadol from 500 ng L-1 (environmentally relevant) to 100 µg L-1 (comparable to previous studies). Two of the soils presented a significantly (p < 0.05) higher sorption at a lower initial tramadol concentration (5000 ng L-1), compared to 20,000 ng L-1. Hysteresis was observed in all studied soils, indicating the accumulation of tramadol. Higher sorption to soils correlated with higher clay content, with soil/water partitioning coefficients (Kd) of 5.5 ± 13.3, 2.5 ± 3.8 and 0.9 ± 3.0 L kg1 for soils with clay contents of 41.9%, 24.5% and 7.4%, respectively. Cation exchange was proposed as the main sorption mechanism for tramadol to soils when the pH was below tramadol's pKa values (9.41 and 13.08). A comparative kinetics study between tramadol in soil/calcium chloride buffer and soil/wastewater effluent demonstrated significantly higher (p < 0.05) tramadol sorption to soil from wastewater effluent. This has the environmental implication that clay soils will be able to retain tramadol from irrigation water, despite the organic content of the irrigation water. Therefore, our studies show that tramadol soil sorption is likely to be higher in agricultural environments reusing wastewater than that predicted from experiments using the OECD 106 Guideline calcium chloride buffer.


Assuntos
Poluentes do Solo , Tramadol , Adsorção , Irrigação Agrícola , Cloreto de Cálcio , Argila , Organização para a Cooperação e Desenvolvimento Econômico , Solo/química , Poluentes do Solo/análise , Águas Residuárias/química , Água
9.
Results Phys ; 34: 105193, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35070648

RESUMO

In late 2019, a novel coronavirus, the SARS-CoV-2 outbreak was identified in Wuhan, China and later spread to every corner of the globe. Whilst the number of infection-induced deaths in Ghana, West Africa are minimal when compared with the rest of the world, the impact on the local health service is still significant. Compartmental models are a useful framework for investigating transmission of diseases in societies. To understand how the infection will spread and how to limit the outbreak. We have developed a modified SEIR compartmental model with nine compartments (CoVCom9) to describe the dynamics of SARS-CoV-2 transmission in Ghana. We have carried out a detailed mathematical analysis of the CoVCom9, including the derivation of the basic reproduction number, R 0 . In particular, we have shown that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 via a candidate Lyapunov function. Using the SARS-CoV-2 reported data for confirmed-positive cases and deaths from March 13 to August 10, 2020, we have parametrised the CoVCom9 model. The results of this fit show good agreement with data. We used Latin hypercube sampling-rank correlation coefficient (LHS-PRCC) to investigate the uncertainty and sensitivity of R 0 since the results derived are significant in controlling the spread of SARS-CoV-2. We estimate that over this five month period, the basic reproduction number is given by R 0 = 3 . 110 , with the 95% confidence interval being 2 . 042 ≤ R 0 ≤ 3 . 240 , and the mean value being R 0 = 2 . 623 . Of the 32 parameters in the model, we find that just six have a significant influence on R 0 , these include the rate of testing, where an increasing testing rate contributes to the reduction of R 0 .

10.
Environ Int ; 169: 107516, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36122459

RESUMO

Waste from dairy production is one of the largest sources of contamination from antimicrobial resistant bacteria (ARB) and genes (ARGs) in many parts of the world. However, studies to date do not provide necessary evidence to inform antimicrobial resistance (AMR) countermeasures. We undertook a detailed, interdisciplinary, longitudinal analysis of dairy slurry waste. The slurry contained a population of ARB and ARGs, with resistances to current, historical and never-used on-farm antibiotics; resistances were associated with Gram-negative and Gram-positive bacteria and mobile elements (ISEcp1, Tn916, Tn21-family transposons). Modelling and experimental work suggested that these populations are in dynamic equilibrium, with microbial death balanced by fresh input. Consequently, storing slurry without further waste input for at least 60 days was predicted to reduce ARB spread onto land, with > 99 % reduction in cephalosporin resistant Escherichia coli. The model also indicated that for farms with low antibiotic use, further reductions are unlikely to reduce AMR further. We conclude that the slurry tank is a critical point for measurement and control of AMR, and that actions to limit the spread of AMR from dairy waste should combine responsible antibiotic use, including low total quantity, avoidance of human critical antibiotics, and choosing antibiotics with shorter half-lives, coupled with appropriate slurry storage.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Cefalosporinas , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Humanos
11.
Environ Monit Assess ; 175(1-4): 431-41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20556648

RESUMO

The partitioning of steroid estrogens in wastewater treatment and receiving waters is likely to influence their discharge to, and persistence in, the environment. This study investigated the partitioning behaviour of steroid estrogens in both laboratory and field studies. Partitioning onto activated sludge from laboratory-scale Husmann units was rapid with equilibrium achieved after 1 h. Sorption isotherms and Kd values decreased in the order 17α-ethinyl estradiol>17α-estradiol>estrone>estriol without a sorption limit being achieved (1/n>1). Samples from a wastewater treatment works indicated no accumulation of steroid estrogens in solids from primary or secondary biological treatment, however, a range of steroid estrogens were identified in sediment samples from the River Thames. This would indicate that partitioning in the environment may play a role in the long-term fate of estrogens, with an indication that they will be recalcitrant in anaerobic conditions.


Assuntos
Estrogênios/análise , Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos
12.
Rapid Commun Mass Spectrom ; 24(5): 501-5, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20112272

RESUMO

Compound-specific stable carbon isotope analysis by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) is an important method for the determination of the (13)C/(12)C ratios of biomolecules such as steroids, for a wide range of applications. However, steroids in their natural form exhibit poor chromatographic resolution, while derivatisation adds carbon thereby corrupting the stable isotopic composition. Hydropyrolysis with a sulphided molybdenum catalyst has been shown to defunctionalise the steroids, while leaving their carbon skeleton intact, allowing for the accurate measurement of carbon isotope ratios. The presence of double bonds in unsaturated steroids such as cholesterol resulted in significant rearrangement of the products, but replacing the original catalyst system with one of platinum results in higher conversions and far greater selectivity. The improved chromatographic performance of the products should allow GC/C/IRMS to be applied to more structurally complex steroid hormones and their metabolites.


Assuntos
Isótopos de Carbono/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Platina/química , Esteroides/química , Catálise , Temperatura Alta , Marcação por Isótopo , Molibdênio/química
13.
Nanomaterials (Basel) ; 10(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081377

RESUMO

Core-shell Zinc Oxide/Layered Double Hydroxide (ZnO@LDH) composite nanomaterials have been produced by a one-step continuous hydrothermal synthesis process, in an attempt to further enhance the application potential of layered double hydroxide (LDH) nanomaterials. The synthesis involves two hydrothermal reactors in series with the first producing a ZnO core and the second producing the Mg2Al-CO3 shell. Crystal domain length of single phase ZnO and composite ZnO was 25 nm and 42 nm, respectively. The ZnO@LDH composite had a specific surface area of 76 m2 g-1, which was larger than ZnO or Mg2Al-CO3 when produced separately (53 m2 g-1 and 58 m2 g-1, respectively). The increased specific surface area is attributed to the structural arrangement of the Mg2Al-CO3 in the composite. Platelets are envisaged to nucleate on the core and grow outwards, thus reducing the face-face stacking that occurs in conventional Mg2Al-CO3 synthesis. The Mg/Al ratio in the single phase LDH was close to the theoretical ratio of 2, but the Mg/Al ratio in the composite was 1.27 due to the formation of Zn2Al-CO3 LDH from residual Zn2+ ions. NaOH concentration was also found to influence Mg/Al ratio, with lower NaOH resulting in a lower Mg/Al ratio. NaOH concentration also affected morphology and specific surface area, with reduced NaOH content in the second reaction stage causing a dramatic increase in specific surface area (> 250 m2 g-1). The formation of a core-shell composite material was achieved through continuous synthesis; however, the final product was not entirely ZnO@Mg2Al-CO3. The product contained a mixture of ZnO, Mg2Al-CO3, Zn2Al-CO3, and the composite material. Whilst further optimisation is required in order to remove other crystalline impurities from the synthesis, this research acts as a stepping stone towards the formation of composite materials via a one-step continuous synthesis.

14.
Front Microbiol ; 11: 575157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101251

RESUMO

We developed a top-down strategy to characterize an antimicrobial, oxidizing sanitizer, which has diverse proposed applications including surface-sanitization of fresh foods, and with benefits for water resilience. The strategy involved finding quenchers of antimicrobial activity then antimicrobial mode of action, by identifying key chemical reaction partners starting from complex matrices, narrowing down reactivity to specific organic molecules within cells. The sanitizer electrolyzed-water (EW) retained partial fungicidal activity against the food-spoilage fungus Aspergillus niger at high levels of added soils (30-750 mg mL-1), commonly associated with harvested produce. Soil with high organic load (98 mg g-1) gave stronger EW inactivation. Marked inactivation by a complex organics mix (YEPD medium) was linked to its protein-rich components. Addition of pure proteins or amino acids (≤1 mg mL-1) fully suppressed EW activity. Mechanism was interrogated further with the yeast model, corroborating marked suppression of EW action by the amino acid methionine. Pre-culture with methionine increased resistance to EW, sodium hypochlorite, or chlorine-free ozonated water. Overexpression of methionine sulfoxide reductases (which reduce oxidized methionine) protected against EW. Fluoroprobe-based analyses indicated that methionine and cysteine inactivate free chlorine species in EW. Intracellular methionine oxidation can disturb cellular FeS-clusters and we showed that EW treatment impairs FeS-enzyme activity. The study establishes the value of a top-down approach for multi-level characterization of sanitizer efficacy and action. The results reveal proteins and amino acids as key quenchers of EW activity and, among the amino acids, the importance of methionine oxidation and FeS-cluster damage for antimicrobial mode-of-action.

15.
Environ Pollut ; 263(Pt B): 114481, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32276130

RESUMO

Plastic pollution represents one of the most salient indicators of society's impact on the environment. The microplastic component of this is ubiquitous, however, microplastic studies are seldom representative of the locations they sample. Over 12 months we explored spatiotemporal variation in microplastic prevalence across a freshwater system and in atmospheric deposition within its catchment, in one of the most temporally comprehensive studies of microplastic pollution. Microplastics were quantified in low concentrations (max 0.4 particles L-1) at all freshwater sites, including upstream of urban areas, and on rivers that do not receive wastewater treatment plant effluent. Extrapolated microplastic abundances at each site varied by up to 8 orders of magnitude over the course of the sampling campaign, suggesting that microplastic surveys that do not account for temporal variability misrepresent microplastic prevalence. Whilst we do not wish to underplay the potential impacts of microplastic particles in the environment, we argue that microplastic pollution needs to be placed in a more critical context, including assessment of temporal variability, to appropriately inform legislators and consumers.


Assuntos
Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água Doce , Microplásticos
16.
J Hazard Mater ; 389: 122150, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32004846

RESUMO

In light of the consequences of global warming and population growth, access to safe drinking water becomes an ever greater challenge, in particular in low to middle income countries in arid regions. Moreover, mining which may cause acid mine drainage and heavy metal contamination puts further pressure on management of limited water resources. Hence, the development of cost effective water treatment methods is critical. Here, using batch reactor experiments we investigate the kinetics and mechanisms behind divalent Mn and trivalent Cr removal from sulfate fluids using natural fluorapatite at 35 °C. The results show that the fluorapatite dissolution rate depends on fluid pH, and that dissolution is the dominant mechanism in fluids with pH below 4. Apatite can thus serve as remediation to neutralize acidic fluids. Fluid pH of 4-6 triggers a dissolution-precipitation mechanism, in some cases following upon a dissolution-only period, with the formation of a metal phosphate. In these experiments, Cr removal is two to ten times faster than Mn removal given similar solution pH. The results demonstrate that natural apatite represents a promising, cost effective material for use in passive remediation of mining-induced contamination of soils and groundwater in arid regions.

17.
Anal Bioanal Chem ; 393(2): 453-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18936918

RESUMO

An introduction to conjugated steroids and the justification for their analysis is provided covering both environmental and biological samples. Determining conjugated steroids or indeed any organic chemical which is conjugated upon excretion from the body has relevance in diagnostic monitoring, forensic screening and environmental analysis (from the endocrine disrupter perspective). The various analytical approaches and the accompanying issues are application-dependent. There are numerous options at each stage of analysis, from extraction, hydrolysis, derivatisation, and detection, and advances can be confined to the specific application for which it was developed. Emphasis is placed on the choice of separation and how gas or liquid chromatography necessitates different preparative stages to enable conjugated steroid determination. Possible future directions and research for conjugated steroid analysis are discussed.


Assuntos
Técnicas de Química Analítica/métodos , Esteroides/análise , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Estrutura Molecular , Sensibilidade e Especificidade , Extração em Fase Sólida , Esteroides/síntese química , Esteroides/metabolismo
18.
Sci Total Environ ; 666: 377-389, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30798244

RESUMO

The potential role of natural textile fibres as environmental pollutants has been speculated upon by some environmental scientists, however, there is a general consensus that their biodegradability reduces their environmental threat. Whilst the risks that they pose remain poorly understood, their environmental prevalence has been noted in several recent microplastic pollution manuscripts. Here we highlight the extent to which natural textile fibres dominate fibre populations of upstream reaches of the River Trent, UK, as well as the atmospheric deposition within its catchment, over a twelve month microplastic sampling campaign. Across 223 samples, natural textile fibres represented 93.8% of the textile fibre population quantified. Moreover, though microplastic particles including synthetic fibres are known to be pervasive environmental pollutants, extruded textile fibres were absent from 82.8% of samples. Natural textile fibres were absent from just 9.7% of samples.

19.
Sci Total Environ ; 655: 1139-1149, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30577107

RESUMO

Copper and zinc are routinely used in livestock antimicrobial footbaths in commercial farming. The footbath mix is a cost to farmers, and the disposal of spent footbath into slurry tanks leads to soil contamination, as well as the potential for antimicrobial metal resistance and co-selection. This study assesses the potential to mitigate a source of antimicrobial metal resistance in slurry tanks while recovering copper and zinc from spent cattle footbaths. This is the first study in literature to investigate the potential of recovering copper from cattle footbath solutions via any method. The sorbent, Ca2Al-EDTA Layered Double Hydroxides (LDH), were used to remove Cu2+ from a Cu2SO4·5H20 solution at different temperatures. The maximum Cu2+ uptake from the Cu2SO4·5H20 solution was 568 ±â€¯88 mg g-1. Faster and higher equilibrium uptake was achieved by increasing the temperature of the solution. The sorbent was found to be effective in removing copper and zinc from a commercially available cattle footbath solution (filtered footbath solution Cu2+ uptake 283 ±â€¯11.05 mg g-1, Zn2+ uptake 60 ±â€¯0.05 mg g-1). Thus, this study demonstrates the opportunity for a completely novel and potentially economically beneficial method of mitigating antimicrobial resistance in agriculture and the environment, while also providing a new valuable copper and zinc waste stream for secondary metal production.


Assuntos
Antibacterianos/análise , Cobre/análise , Indústria de Laticínios/métodos , Farmacorresistência Bacteriana , Hidróxidos/química , Águas Residuárias/análise , Zinco/análise , Adsorção , Animais , Bovinos
20.
Sci Total Environ ; 649: 12-20, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30170212

RESUMO

The isolation of antimicrobial resistant bacteria (ARB) from wildlife living adjacent to humans has led to the suggestion that such antimicrobial resistance (AMR) is anthropogenically driven by exposure to antimicrobials and ARB. However, ARB have also been detected in wildlife living in areas without interaction with humans. Here, we investigated patterns of resistance in Escherichia coli isolated from 408 wild bird and mammal faecal samples. AMR and multi-drug resistance (MDR) prevalence in wildlife samples differed significantly between a Sewage Treatment Plant (STP; wastes of antibiotic-treated humans) and a Farm site (antibiotic-treated livestock wastes) and Central site (no sources of wastes containing anthropogenic AMR or antimicrobials), but patterns of resistance also varied significantly over time and between mammals and birds. Over 30% of AMR isolates were resistant to colistin, a last-resort antibiotic, but resistance was not due to the mcr-1 gene. ESBL and AmpC activity were common in isolates from mammals. Wildlife were, therefore, harbouring resistance of clinical relevance. AMR E. coli, including MDR, were found in diverse wildlife species, and the patterns and prevalence of resistance were not consistently associated with site and therefore different exposure risks. We conclude that AMR in commensal bacteria of wildlife is not driven simply by anthropogenic factors, and, in practical terms, this may limit the utility of wildlife as sentinels of spatial variation in the transmission of environmental AMR.


Assuntos
Aves/microbiologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Roedores/microbiologia , Sequência de Aminoácidos , Animais , Animais Selvagens/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Inglaterra , Meio Ambiente , Escherichia coli/fisiologia , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa