Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Vet Ital ; 59(1): 83-92, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37994640

RESUMO

The retrovirus bovine leukemia virus (BLV) might produce abnormal immune function, associated with susceptibility to developing other infectious diseases, including mastitis. This study aimed to determine the proviral load and cytokines gene expression in peripheral blood mononuclear cells (PMBC) and milk somatic cells (SC) in BLV-infected and non-infected cattle. Of 27 BLV-infected cows in PBMC, 17 (62.96%) had a high proviral load (HPL), and 10 (37.04%) had a low proviral load (LPL). All SC samples had low proviral load (LPL-SC). Higher IFN-γ and IL-10 expression, and lower IL-12 and IL-6 expression, were found in PBMC from BLV-infected compared to BLV non-infected cattle. Moreover, higher IFN-γ, IL-12, and IL-6 expression, and lower IL-10 expression were observed in cattle with LPL-PBMC compared to HPL-PBMC. In milk samples, lower IFN-γ and higher IL-12 mRNA expression were observed in LPL-SC compared to BLV non-infected cattle in SC. IL-10 and IL-6 expression mRNA was significantly lower in LPL-SC than in SC from BLV non-infected cattle. This study shows that milk SC maintains lower proviral load levels than PBMC. This first report on Th1 and Th2 cytokines expression levels in SC may be relevant to future control strategies for BLV infection, mastitis, and udder health management.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Mastite , Feminino , Bovinos , Animais , Citocinas/genética , Leucócitos Mononucleares , Interleucina-10 , Vírus da Leucemia Bovina/genética , Leucose Enzoótica Bovina/genética , Provírus/genética , Leite , Interleucina-6 , Interleucina-12 , RNA Mensageiro , Mastite/veterinária
2.
J Immunol ; 184(10): 5715-22, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20382889

RESUMO

Alcohol abuse is associated with immunosuppressive and infectious sequelae. Particularly, alcoholics are more susceptible to pulmonary infections. In this report, gene transcriptional profiles of primary human airway epithelial cells exposed to varying doses of alcohol (0, 50, and 100 mM) were obtained. Comparison of gene transcription levels in 0 mM alcohol treatments with those in 50 mM alcohol treatments resulted in 2 genes being upregulated and 16 genes downregulated by at least 2-fold. Moreover, 0 mM and 100 mM alcohol exposure led to the upregulation of 14 genes and downregulation of 157 genes. Among the upregulated genes, glucocorticoid-induced leucine zipper (GILZ) responded to alcohol in a dose-dependent manner. Moreover, GILZ protein levels also correlated with this transcriptional pattern. Lentiviral expression of GILZ small interfering RNA in human airway epithelial cells diminished the alcohol-induced upregulation, confirming that GILZ is indeed an alcohol-responsive gene. Gene silencing of GILZ in A549 cells resulted in secretion of significantly higher amounts of inflammatory cytokines in response to IL-1beta stimulation. The GILZ-silenced cells were more resistant to alcohol-mediated suppression of cytokine secretion. Further data demonstrated that the glucocorticoid receptor is involved in the regulation of GILZ by alcohol. Because GILZ is a key glucocorticoid-responsive factor mediating the anti-inflammatory and immunosuppressive actions of steroids, we propose that similar signaling pathways may play a role in the anti-inflammatory and immunosuppressive effects of alcohol.


Assuntos
Etanol/farmacologia , Mediadores da Inflamação/farmacologia , Pulmão/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Fatores de Transcrição/biossíntese , Regulação para Cima/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/biossíntese , Citocinas/genética , Perfilação da Expressão Gênica , Inativação Gênica/efeitos dos fármacos , Inativação Gênica/imunologia , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Pulmão/citologia , Pulmão/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/genética , Regulação para Cima/imunologia
3.
Mol Biol Cell ; 17(4): 1686-96, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16436506

RESUMO

Poly(ADP-ribose)polymerase 1 (PARP1) is well characterized for its role in base excision repair (BER), where it is activated by and binds to DNA breaks and catalyzes the poly(ADP-ribosyl)ation of several substrates involved in DNA damage repair. Here we demonstrate that PARP1 associates with telomere repeat binding factor 2 (TRF2) and is capable of poly(ADP-ribosyl)ation of TRF2, which affects binding of TRF2 to telomeric DNA. Immunostaining of interphase cells or metaphase spreads shows that PARP1 is detected sporadically at normal telomeres, but it appears preferentially at eroded telomeres caused by telomerase deficiency or damaged telomeres induced by DNA-damaging reagents. Although PARP1 is dispensable in the capping of normal telomeres, Parp1 deficiency leads to an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA in primary murine cells after induction of DNA damage. Our results suggest that upon DNA damage, PARP1 is recruited to damaged telomeres, where it can help protect telomeres against chromosome end-to-end fusions and genomic instability.


Assuntos
Poli(ADP-Ribose) Polimerases/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Células Cultivadas , Cromossomos/metabolismo , DNA/metabolismo , Dano ao DNA , Dimerização , Embrião de Mamíferos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Instabilidade Genômica , Humanos , Camundongos , Camundongos Mutantes , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/análise , Poli(ADP-Ribose) Polimerases/genética , Mapeamento de Interação de Proteínas , Telômero/química , Telômero/genética
4.
Mol Cell Biol ; 25(11): 4541-51, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15899858

RESUMO

The Cdc14 dual-specificity phosphatases regulate key events in the eukaryotic cell cycle. However, little is known about the function of mammalian CDC14B family members. Here, we demonstrate that subcellular localization of CDC14B protein is cell cycle regulated. CDC14B can bind, bundle, and stabilize microtubules in vitro independently of its catalytic activity. Basic amino acid residues within the nucleolar targeting domain are important for both retaining CDC14B in the nucleolus and preventing microtubule bundling. Overexpression of CDC14B resulted in the formation of cytoplasmic CDC14B and microtubule bundles in interphase cells. These microtubule bundles were resistant to microtubule depolymerization reagents and enriched in acetylated alpha-tubulin. Expression of cytoplasmic forms of CDC14B impaired microtubule nucleation from the microtubule organization center. CDC14B is thus a novel microtubule-bundling and -stabilizing protein, whose regulated subcellular localization may help modulate spindle and microtubule dynamics in mitosis.


Assuntos
Ciclo Celular/fisiologia , Microtúbulos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Acetilação , Proteínas de Ciclo Celular/genética , Citoplasma/química , Fosfatases de Especificidade Dupla , Teste de Complementação Genética , Humanos , Microtúbulos/química , Proteínas Tirosina Fosfatases/análise , Proteínas Tirosina Fosfatases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
5.
Mol Cell Biol ; 24(12): 5314-23, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15169895

RESUMO

Vault poly(ADP-ribose) polymerase (VPARP) was originally identified as a minor protein component of the vault ribonucleoprotein particle, which may be involved in molecular assembly or subcellular transport. In addition to the association of VPARP with the cytoplasmic vault particle, subpopulations of VPARP localize to the nucleus and the mitotic spindle, indicating that VPARP may have other cellular functions. We found that VPARP was associated with telomerase activity and interacted with exogenously expressed telomerase-associated protein 1 (TEP1) in human cells. To study the possible role of VPARP in telomerase and vault complexes in vivo, mVparp-deficient mice were generated. Mice deficient in mVparp were viable and fertile for up to five generations, with no apparent changes in telomerase activity or telomere length. Vaults purified from mVparp-deficient mouse liver appeared intact, and no defect in association with other vault components was observed. Mice deficient in mTep1, whose disruption alone does not affect telomere function but does affect the stability of vault RNA, showed no additional telomerase or telomere-related phenotypes when the mTep1 deficiency was combined with an mVparp deficiency. These data suggest that murine mTep1 and mVparp, alone or in combination, are dispensable for normal development, telomerase catalysis, telomere length maintenance, and vault structure in vivo.


Assuntos
Poli(ADP-Ribose) Polimerases/metabolismo , Telomerase/metabolismo , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Clonais , Marcação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Estrutura Molecular , Poli(ADP-Ribose) Polimerases/deficiência , Poli(ADP-Ribose) Polimerases/genética , Proteínas de Ligação a RNA , Partículas de Ribonucleoproteínas em Forma de Abóbada/química , Partículas de Ribonucleoproteínas em Forma de Abóbada/deficiência , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética
6.
Proc Natl Acad Sci U S A ; 102(29): 10256-60, 2005 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-16000404

RESUMO

Telomerase deficiency leads to a progressive loss of telomeric DNA that eventually triggers cell apoptosis in human primary cells during prolonged growth in culture. Rare survivors can maintain telomere length through either activation of telomerase or recombination-based telomere lengthening, and thus proliferate indefinitely. We have explored the possibility that telomeres may be maintained through telomere sister chromatid exchange (T-SCE) in murine telomere reverse transcriptase-deficient (mTert-/-) splenocytes and ES cells. Because telomerase deficiency leads to gradual loss of telomeric DNA in mTert-/- splenocytes and ES cells and eventually to chromosomes with telomere signal-free ends (SFEs), we examined these cell types for evidence of sister chromatid exchange at telomeres, and observed an increase in T-SCEs only in a subset of mTert-/- splenocytes or ES cells that possessed multiple SFEs. Furthermore, T-SCEs were more often detected in ES cells than in splenocytes that harbored a similar frequency of SFEs. In mTert heterozygous (mTert+/-) ES cells or splenocytes, which are known to exhibit a decrease in average telomere length but no SFEs, no increase in T-SCE was observed. In addition to T-SCE, other genomic rearrangements (i.e., SCE) were also significantly increased in mTert-/- ES cells possessing critically short telomeres, but not in splenocytes. Our results suggest that animals and cell culture differ in their ability to carry out genomic rearrangements as a means of maintaining telomere integrity when telomeres become critically shortened.


Assuntos
Proteínas de Ligação a DNA/deficiência , Embrião de Mamíferos/citologia , Troca de Cromátide Irmã/fisiologia , Células-Tronco/citologia , Telomerase/deficiência , Telômero/fisiologia , Animais , Hibridização in Situ Fluorescente , Camundongos , Camundongos Mutantes , Troca de Cromátide Irmã/genética , Baço/citologia , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa