Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mov Disord ; 39(2): 267-272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38226487

RESUMO

The link between smoking and a lower risk of Parkinson's disease (PD) is one of the strongest environmental or lifestyle associations in neuroepidemiology. Growing evidence supports the hypothesis that the association is based on a neuroprotective effect of smoking on PD, despite the plausible alternative that smoking serves as a marker for a proximal protective influence without itself conferring benefit. But how smoking could protect against neurodegeneration in PD is not well understood. Of several candidate molecules and mechanisms that have been nominated, nicotine has received the most attention. However, randomized controlled clinical trials of nicotine in PD have failed to demonstrate benefit on motor endpoints, including the NIC-PD study in which recently diagnosed participants were randomly assigned to placebo or nicotine treatment for 1 year. Given these results, the time is right to evaluate the neuroprotective potential of other molecules and biochemical cascades triggered by smoking. Here, we review the evidence supporting smoking's possible protective effect on PD, compounds in tobacco and smoke that might mediate such benefit, and non-causal classes of explanation, including reverse causation and the prospect of shared genetic determinants of smoking and PD resistance. The therapeutic potential of non-nicotine components of smoke is suggested by studies supporting multiple alternative mechanisms ranging from monoamine oxidase inhibitors to gut microbiome disruption to antioxidant response induction by chronic exposure to low levels of carbon monoxide. Rigorous investigation is warranted to evaluate this molecule and others for disease-preventing and disease-modifying activity in PD models and, if warranted, in clinical trials. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Nicotina , Doença de Parkinson , Fumar , Humanos , Nicotina/efeitos adversos , Doença de Parkinson/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , Fumantes , Fumar/efeitos adversos
2.
Epilepsia ; 65(7): 2165-2178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38752861

RESUMO

OBJECTIVE: The increased amplitude of ictal activity is a common feature of epileptic seizures, but the determinants of this amplitude have not been identified. Clinically, ictal amplitudes are measured electrographically (using, e.g., electroencephalography, electrocorticography, and depth electrodes), but these methods do not enable the assessment of the activity of individual neurons. Population signal may increase from three potential sources: (1) increased synchrony (i.e., more coactive neurons); (2) altered active state, from bursts of action potentials and/or paroxysmal depolarizing shifts in membrane potential; and (3) altered subthreshold state, which includes all lower levels of activity. Here, we quantify the fraction of ictal signal from each source. METHODS: To identify the cellular determinants of the ictal signal, we measured single cell and population electrical activity and neuronal calcium levels via optical imaging of the genetically encoded calcium indicator (GECI) GCaMP. Spontaneous seizure activity was assessed with microendoscopy in an APP/PS1 mouse with focal cortical injury and via widefield imaging in the organotypic hippocampal slice cultures (OHSCs) model of posttraumatic epilepsy. Single cell calcium signals were linked to a range of electrical activities by performing simultaneous GECI-based calcium imaging and whole-cell patch-clamp recordings in spontaneously seizing OHSCs. Neuronal resolution calcium imaging of spontaneous seizures was then used to quantify the cellular contributions to population-level ictal signal. RESULTS: The seizure onset signal was primarily driven by increased subthreshold activity, consistent with either barrages of excitatory postsynaptic potentials or sustained membrane depolarization. Unsurprisingly, more neurons entered the active state as seizure activity progressed. However, the increasing fraction of active cells was primarily driven by synchronous reactivation and not from continued recruitment of new populations of neurons into the seizure. SIGNIFICANCE: This work provides a critical link between single neuron activity and population measures of seizure activity.


Assuntos
Hipocampo , Neurônios , Animais , Camundongos , Neurônios/fisiologia , Hipocampo/fisiopatologia , Potenciais de Ação/fisiologia , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Eletroencefalografia/métodos , Convulsões/fisiopatologia , Epilepsia/fisiopatologia , Masculino , Cálcio/metabolismo
3.
Alzheimers Dement ; 20(6): 4234-4249, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38764252

RESUMO

INTRODUCTION: Sleep disturbances are common in Alzheimer's disease (AD) and may reflect pathologic changes in brain networks. To date, no studies have examined changes in sleep functional connectivity (FC) in AD or their relationship with network hyperexcitability and cognition. METHODS: We assessed electroencephalogram (EEG) sleep FC in 33 healthy controls, 36 individuals with AD without epilepsy, and 14 individuals with AD and epilepsy. RESULTS: AD participants showed increased gamma connectivity in stage 2 sleep (N2), which was associated with longitudinal cognitive decline. Network hyperexcitability in AD was associated with a distinct sleep connectivity signature, characterized by decreased N2 delta connectivity and reversal of several connectivity changes associated with AD. Machine learning algorithms using sleep connectivity features accurately distinguished diagnostic groups and identified "fast cognitive decliners" among study participants who had AD. DISCUSSION: Our findings reveal changes in sleep functional networks associated with cognitive decline in AD and may have implications for disease monitoring and therapeutic development. HIGHLIGHTS: Brain functional connectivity (FC) in Alzheimer's disease is altered during sleep. Sleep FC measures correlate with cognitive decline in AD. Network hyperexcitability in AD has a distinct sleep connectivity signature.


Assuntos
Doença de Alzheimer , Encéfalo , Eletroencefalografia , Sono , Humanos , Doença de Alzheimer/fisiopatologia , Masculino , Feminino , Idoso , Sono/fisiologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Cognição/fisiologia , Transtornos do Sono-Vigília/fisiopatologia , Epilepsia/fisiopatologia , Aprendizado de Máquina , Testes Neuropsicológicos/estatística & dados numéricos , Pessoa de Meia-Idade
4.
Alzheimers Dement ; 20(3): 2298-2308, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38265159

RESUMO

Despite its high prevalence among dementias, Lewy body dementia (LBD) remains poorly understood with a limited, albeit growing, evidence base. The public-health burden that LBD imposes is worsened by overlapping pathologies, which contribute to misdiagnosis, and lack of treatments. For this report, we gathered and analyzed public-domain information on advocacy, funding, research outputs, and the therapeutic pipeline to identify gaps in each of these key elements. To further understand the current gaps, we also conducted interviews with leading experts in regulatory/governmental agencies, LBD advocacy, academic research, and biopharmaceutical research, as well as with funding sources. We identified wide gaps across the entire landscape, the most critical being in research. Many of the experts participated in a workshop to discuss the prioritization of research areas with a view to accelerating therapeutic development and improving patient care. This white paper outlines the opportunities for bridging the major LBD gaps and creates the framework for collaboration in that endeavor. HIGHLIGHTS: A group representing academia, government, industry, and consulting expertise was convened to discuss current progress in Dementia with Lewy Body care and research. Consideration of expert opinion,natural language processing of the literature as well as publicly available data bases, and Delphi inspired discussion led to a proposed consensus document of priorities for the field.


Assuntos
Doença por Corpos de Lewy , Humanos , Doença por Corpos de Lewy/diagnóstico , Doença por Corpos de Lewy/terapia
5.
Brain ; 144(1): 266-277, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33578418

RESUMO

Multiple neuropathological processes can manifest in life as a corticobasal syndrome. We sought to relate retention of the tau-PET tracer 18F-AV-1451 and structural magnetic resonance measures of regional atrophy to clinical features in clinically diagnosed and neuropathologically confirmed cases of corticobasal syndrome and to determine whether these vary with the underlying neuropathological changes. In this observational, cross-sectional study, 11 subjects (eight female and three male, median age 72 years) with corticobasal syndrome underwent structural MRI, tau-PET with 18F-AV-1451, amyloid-PET with 11C-Pittsburgh compound B, detailed clinical examinations and neuropsychological testing. Of the 11, three had evidence of high amyloid burden consistent with Alzheimer's disease while eight did not. Neuropathological evaluations were acquired in six cases. Mixed effects general linear models were used to compare 18F-AV-1451 retention and atrophy in amyloid-negative corticobasal syndrome cases to 32 age-matched healthy control subjects and to relate cortical and subcortical 18F-AV-1451 retention and atrophy to clinical features. Subjects without amyloid, including three with pathologically confirmed corticobasal degeneration, showed greater regional 18F-AV-1451 retention and associated regional atrophy in areas commonly associated with corticobasal degeneration pathology than healthy control subjects [retention was higher compared to healthy controls (P = 0.0011), driven especially by the precentral gyrus (P = 0.011) and pallidum (P < 0.0001), and greater atrophy was seen in subjects compared to control subjects (P = 0.0004)]. Both 18F-AV-1451 retention and atrophy were greater in the clinically more affected hemisphere [on average, retention was 0.173 standardized uptake value ratio units higher on the more affected side (95% confidence interval, CI 0.11-0.24, P < 0.0001), and volume was 0.719 lower on the more affected side (95% CI 0.35-1.08, P = 0.0001)]. 18F-AV-1451 retention was greater in subcortical than in cortical regions, P < 0.0001. In contrast to these findings, subjects with amyloid-positive corticobasal syndrome, including two neuropathologically confirmed cases of Alzheimer's disease, demonstrated greater and more widespread 18F-AV-1451 retention and regional atrophy than observed in the amyloid-negative cases. There was thalamic 18F-AV-1451 retention but minimal cortical and basal ganglia uptake in a single corticobasal syndrome subject without neuropathological evidence of tau pathology, likely representing non-specific signal. Asymmetric cortical and basal ganglia 18F-AV-1451 retention consonant with the clinical manifestations characterize corticobasal syndrome due to corticobasal degeneration, whereas the cortical retention in cases associated with Alzheimer's disease is greater and more diffuse.


Assuntos
Doenças dos Gânglios da Base/patologia , Córtex Cerebral/patologia , Vias Neurais/patologia , Idoso , Idoso de 80 Anos ou mais , Doenças dos Gânglios da Base/diagnóstico por imagem , Carbolinas , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos
6.
Ann Neurol ; 82(4): 622-634, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28980714

RESUMO

OBJECTIVE: 18 F-flortaucipir (formerly 18 F-AV1451 or 18 F-T807) binds to neurofibrillary tangles in Alzheimer disease, but tissue studies assessing binding to tau aggregates in progressive supranuclear palsy (PSP) have yielded mixed results. We compared in vivo 18 F-flortaucipir uptake in patients meeting clinical research criteria for PSP (n = 33) to normal controls (n = 46) and patients meeting criteria for Parkinson disease (PD; n = 26). METHODS: Participants underwent magnetic resonance imaging and positron emission tomography for amyloid-ß (11 C-PiB or 18 F-florbetapir) and tau (18 F-flortaucipir). 18 F-flortaucipir standardized uptake value ratios were calculated (t = 80-100 minutes, cerebellum gray matter reference). Voxelwise and region-of-interest group comparisons were performed in template space, with receiver operating characteristic curve analyses to assess single-subject discrimination. Qualitative comparisons with postmortem tau are reported in 1 patient who died 9 months after 18 F-flortaucipir. RESULTS: Clinical PSP patients showed bilaterally elevated 18 F-flortaucipir uptake in globus pallidus, putamen, subthalamic nucleus, midbrain, and dentate nucleus relative to controls and PD patients (voxelwise p < 0.05 family wise error corrected). Globus pallidus binding best distinguished PSP patients from controls and PD (area under the curve [AUC] = 0.872 vs controls, AUC = 0.893 vs PD). PSP clinical severity did not correlate with 18 F-flortaucipir in any region. A patient with clinical PSP and pathological diagnosis of corticobasal degeneration had severe tau pathology in PSP-related brain structures with good correspondence between in vivo 18 F-flortaucipir and postmortem tau neuropathology. INTERPRETATION: 18 F-flortaucipir uptake was elevated in PSP versus controls and PD patients in a pattern consistent with the expected distribution of tau pathology. Ann Neurol 2017;82:622-634.


Assuntos
Encéfalo/diagnóstico por imagem , Carbolinas/farmacocinética , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Proteínas tau/metabolismo , Idoso , Compostos de Anilina/farmacocinética , Mapeamento Encefálico , Estudos de Casos e Controles , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Diagnóstico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Doença de Parkinson/complicações , Índice de Gravidade de Doença , Paralisia Supranuclear Progressiva/complicações , Tiazóis/farmacocinética
7.
Ann Neurol ; 81(1): 117-128, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27997036

RESUMO

OBJECTIVE: Recent studies have shown that positron emission tomography (PET) tracer AV-1451 exhibits high binding affinity for paired helical filament (PHF)-tau pathology in Alzheimer's brains. However, the ability of this ligand to bind to tau lesions in other tauopathies remains controversial. Our goal was to examine the correlation of in vivo and postmortem AV-1451 binding patterns in three autopsy-confirmed non-Alzheimer tauopathy cases. METHODS: We quantified in vivo retention of [F-18]-AV-1451 and performed autoradiography, [H-3]-AV-1451 binding assays, and quantitative tau measurements in postmortem brain samples from two progressive supranuclear palsy (PSP) cases and a MAPT P301L mutation carrier. They all underwent [F-18]-AV-1451 PET imaging before death. RESULTS: The three subjects exhibited [F-18]-AV-1451 in vivo retention predominantly in basal ganglia and midbrain. Neuropathological examination confirmed the PSP diagnosis in the first two subjects; the MAPT P301L mutation carrier had an atypical tauopathy characterized by grain-like tau-containing neurites in gray and white matter with heaviest burden in basal ganglia. In all three cases, autoradiography failed to show detectable [F-18]-AV-1451 binding in multiple brain regions examined, with the exception of entorhinal cortex (reflecting incidental age-related neurofibrillary tangles) and neuromelanin-containing neurons in the substantia nigra (off-target binding). The lack of a consistent significant correlation between in vivo [F-18]-AV-1541 retention and postmortem in vitro binding and tau measures in these cases suggests that this ligand has low affinity for tau lesions primarily made of straight tau filaments. INTERPRETATION: AV-1451 may have limited utility for in vivo selective and reliable detection of tau aggregates in these non-Alzheimer tauopathies. ANN NEUROL 2017;81:117-128.


Assuntos
Encéfalo/patologia , Carbolinas/metabolismo , Tauopatias/patologia , Proteínas tau/genética , Idoso , Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor/metabolismo , Neuroimagem Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Tomografia por Emissão de Pósitrons , Ensaio Radioligante , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Trítio/metabolismo , Proteínas tau/metabolismo
8.
Ann Neurol ; 78(5): 787-800, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26344059

RESUMO

OBJECTIVE: To examine region- and substrate-specific autoradiographic and in vitro binding patterns of positron emission tomography tracer [F-18]-AV-1451 (previously known as T807), tailored to allow in vivo detection of paired helical filament-tau-containing lesions, and to determine whether there is off-target binding to other amyloid/non-amyloid proteins. METHODS: We applied [F-18]-AV-1451 phosphor screen autoradiography, [F-18]-AV-1451 nuclear emulsion autoradiography, and [H-3]-AV-1451 in vitro binding assays to the study of postmortem samples from patients with a definite pathological diagnosis of Alzheimer disease, frontotemporal lobar degeneration-tau, frontotemporal lobar degeneration-transactive response DNA binding protein 43 (TDP-43), progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies, multiple system atrophy, cerebral amyloid angiopathy and elderly controls free of pathology. RESULTS: Our data suggest that [F-18]-AV-1451 strongly binds to tau lesions primarily made of paired helical filaments in Alzheimer brains (eg, intraneuronal and extraneuronal tangles and dystrophic neurites), but does not seem to bind to a significant extent to neuronal and glial inclusions mainly composed of straight tau filaments in non-Alzheimer tauopathy brains or to lesions containing ß-amyloid, α-synuclein, or TDP-43. [F-18]-AV-1451 off-target binding to neuromelanin- and melanin-containing cells and, to a lesser extent, to brain hemorrhagic lesions was identified. INTERPRETATION: Our data suggest that [F-18]-AV-1451 holds promise as a surrogate marker for the detection of brain tau pathology in the form of tangles and paired helical filament-tau-containing neurites in Alzheimer brains but also point to its relatively lower affinity for lesions primarily made of straight tau filaments in non-Alzheimer tauopathy cases and to the existence of some [F-18]-AV-1451 off-target binding. These findings provide important insights for interpreting in vivo patterns of [F-18]-AV-1451 retention.


Assuntos
Encéfalo/diagnóstico por imagem , Carbolinas , Compostos Radiofarmacêuticos , Tauopatias/diagnóstico por imagem , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Amiloide/metabolismo , Autorradiografia , Cadáver , Demência/diagnóstico por imagem , Feminino , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Humanos , Corpos de Inclusão/diagnóstico por imagem , Hemorragias Intracranianas/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Proteinopatias TDP-43/diagnóstico por imagem
9.
Neurodegener Dis ; 16(1-2): 118-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26655867

RESUMO

BACKGROUND: Effective therapies for dementia with Lewy bodies (DLB) and Parkinson's disease (PD) dementia will require accurate diagnosis and an understanding of the contribution of distinct molecular pathologies to these diseases. We seek to use imaging biomarkers to improve diagnostic accuracy and to clarify the contribution of molecular species to cognitive impairment in DLB and PD. SUMMARY: We have performed cross-sectional and prospective cohort studies in subjects with DLB, PD with normal cognition, PD with mild cognitive impairment and PD with dementia, contrasted with Alzheimer's disease (AD) and healthy control subjects (HCS). Subjects underwent formal neurological examination, detailed neuropsychological assessments, MRI and PET scans with the radioligands altropane (a dopamine transporter, DAT) and Pittsburgh compound B (PiB; ß-amyloid). Putamen DAT concentrations were similar in DLB and PD and differentiated them from HCS and AD. Decreased caudate DAT concentration related to functional impairment in DLB but not PD. PiB uptake was greatest in DLB. However, cortical PiB retention was common in PD and predicted cognitive decline. PET imaging of tau aggregates holds promise both to clarify the contribution of tau to cognitive decline in these diseases and to differentiate DLB and PD from the parkinsonian tauopathies. KEY MESSAGES: Together, DAT and amyloid PET imaging discriminate DLB from PD and from other disease groups and identify pathological processes that contribute to their course. Multimodal PET imaging has the potential to increase the diagnostic accuracy of DLB and PD in the clinic, improve cohort uniformity for clinical trials, and serve as biomarkers for targeted molecular therapies.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Doença por Corpos de Lewy/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Doença de Alzheimer/patologia , Compostos de Anilina , Encéfalo/patologia , Carbolinas , Cocaína/análogos & derivados , Disfunção Cognitiva/complicações , Disfunção Cognitiva/patologia , Estudos Transversais , Diagnóstico Diferencial , Doença por Corpos de Lewy/patologia , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Estudos Prospectivos , Cintilografia , Compostos Radiofarmacêuticos , Análise de Sobrevida , Tiazóis
10.
Neural Comput ; 26(1): 1-39, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24102128

RESUMO

Pyramidal cells in the rodent hippocampus often exhibit clear spatial tuning in navigation. Although it has been long suggested that pyramidal cell activity may underlie a topological code rather than a topographic code, it remains unclear whether an abstract spatial topology can be encoded in the ensemble spiking activity of hippocampal place cells. Using a statistical approach developed previously, we investigate this question and related issues in greater detail. We recorded ensembles of hippocampal neurons as rodents freely foraged in one- and two-dimensional spatial environments and used a "decode-to-uncover" strategy to examine the temporally structured patterns embedded in the ensemble spiking activity in the absence of observed spatial correlates during periods of rodent navigation or awake immobility. Specifically, the spatial environment was represented by a finite discrete state space. Trajectories across spatial locations ("states") were associated with consistent hippocampal ensemble spiking patterns, which were characterized by a state transition matrix. From this state transition matrix, we inferred a topology graph that defined the connectivity in the state space. In both one- and two-dimensional environments, the extracted behavior patterns from the rodent hippocampal population codes were compared against randomly shuffled spike data. In contrast to a topographic code, our results support the efficiency of topological coding in the presence of sparse sample size and fuzzy space mapping. This computational approach allows us to quantify the variability of ensemble spiking activity, examine hippocampal population codes during off-line states, and quantify the topological complexity of the environment.


Assuntos
Potenciais de Ação/fisiologia , Simulação por Computador , Hipocampo/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Camundongos , Ratos
11.
Curr Neurol Neurosci Rep ; 14(8): 472, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25011528

RESUMO

Cognitive impairment and dementia are significant sequelae of Parkinson disease (PD) and comprise a key feature of dementia with Lewy bodies (DLB), a disease with similar clinical and neuropathological features. Multiple independent causes have been implicated in PD dementia (PDD) and DLB, among them the accumulation of ß-amyloid, a neuropathological hallmark of Alzheimer disease. Over the last decade, PET imaging has emerged as a viable method to measure amyloid burden in the human brain and relate it to neurodegenerative diseases. This article reviews what amyloid imaging has taught us about PDD and DLB. Current data suggest that brain amyloid deposition tends to be more marked in DLB, yet contributes to cognitive impairment in both DLB and PD. These results are broadly consistent with neuropathology and CSF studies. ß-Amyloid may interact synergistically with other pathological processes in PD and DLB to contribute to cognitive impairment.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Demência/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo , Demência/etiologia , Humanos , Doença de Parkinson/complicações
12.
bioRxiv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38853978

RESUMO

Current therapeutic strategies for Alzheimer's disease (AD) target amyloid-beta (Aß) fibrils and high molecular weight protofibrils associated with plaques, but other bioactive species may directly contribute to neural systems failure in AD. Employing hippocampal electrophysiological recordings and dynamic calcium imaging across the sleep-wake cycle in young mice expressing human Aß and Aß oligomers, we reveal marked impairments of hippocampal function long before amyloid plaques predominate. In slow wave sleep (SWS), Aß increased the proportion of hypoactive cells and reduced place-cell reactivation. During awake behavior, Aß impaired theta-gamma phase-amplitude coupling (PAC) and drove excessive synchronization of place cell calcium fluctuations with hippocampal theta. Remarkably, the on-line impairment of hippocampal theta-gamma PAC correlated with the SWS impairment of place-cell reactivation. Together, these results identify toxic effects of Aß on memory encoding and consolidation processes before robust plaque deposition and support targeting soluble Aß-related species to treat and prevent AD.

13.
Neurology ; 102(12): e209460, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38815233

RESUMO

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) copathologies of ß-amyloid and tau are common in the Lewy body diseases (LBD), dementia with Lewy bodies (DLB) and Parkinson disease (PD), and target distinct hippocampal subfields compared with Lewy pathology, including subiculum and CA1. We investigated the hypothesis that AD copathologies impact the pattern of hippocampal subregion volume loss and cognitive function in LBD. METHODS: This was a cross-sectional and longitudinal, single-center, observational cohort study. Participants underwent neuropsychological testing and 3T-MRI with hippocampal segmentation using FreeSurferV7. PiB-PET and flortaucipir-PET imaging of comorbid ß-amyloid (A) and tau (T) were acquired. The association of functional cognition, ß-amyloid, and tau loads with hippocampal subregion volume was assessed. The contribution of subregion volumes to the relationship of AD-related deposits on functional cognition was examined with mediation analysis. The effects of AD-related deposits on the rate of subregion atrophy were evaluated with mixed-effects models. RESULTS: Of 103 participants (mean age: 70.3 years; 37.3% female), 52 had LBD with impaired cognition (LBD-I), 26 had normal cognition (LBD-N), and 25 were A- healthy controls (HCs). Volumes of hippocampal subregions prone to AD copathologies, including subiculum (F = 6.9, p = 0.002), presubiculum (F = 7.3, p = 0.001), and parasubiculum (F = 5.9, p = 0.004), were reduced in LBD-I compared with LBD-N and HC. Volume was preserved in CA2/3, Lewy pathology susceptible subregions. In LBD-I, reduced CA1, subiculum, and presubiculum volumes were associated with greater functional cognitive impairment (all p < 0.05). Compared with HC, subiculum volume was reduced in A+T+ but not A-T- participants (F = 2.62, p = 0.043). Reduced subiculum volume mediated the effect of amyloid on functional cognition (0.12, 95% CI: 0.005 to 0.26, p = 0.040). In 26 longitudinally-evaluated participants, baseline tau deposition was associated with faster CA1 (p = 0.021) and subiculum (p = 0.002) atrophy. DISCUSSION: In LBD, volume loss in hippocampal output subregions-particularly the subiculum-is associated with functional cognition and AD-related deposits. Tau deposition appears to accelerate subiculum and CA1 atrophy, whereas Aß does not. Subiculum volume may have value as a biomarker of AD copathology-mediated neurodegeneration and disease progression.


Assuntos
Peptídeos beta-Amiloides , Hipocampo , Doença por Corpos de Lewy , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/patologia , Feminino , Masculino , Idoso , Proteínas tau/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/metabolismo , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Estudos Longitudinais , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais , Testes Neuropsicológicos , Estudos de Coortes , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Pessoa de Meia-Idade
14.
Adv Sci (Weinh) ; : e2309021, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923244

RESUMO

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic stratagem for neurodegenerative disorders, particularly Alzheimer's disease (AD). A positron emission tomography (PET) probe enabling brain RIPK1 imaging can provide a powerful tool to unveil the neuropathology associated with RIPK1. Herein, the development of a new PET radioligand, [11C]CNY-10 is reported, which may enable brain RIPK1 imaging. [11C]CNY-10 is radiosynthesized with a high radiochemical yield (41.8%) and molar activity (305 GBq/µmol). [11C]CNY-10 is characterized by PET imaging in rodents and a non-human primate, demonstrating good brain penetration, binding specificity, and a suitable clearance kinetic profile. It is performed autoradiography of [11C]CNY-10 in human AD and healthy control postmortem brain tissues, which shows strong radiosignal in AD brains higher than healthy controls. Subsequently, it is conducted further characterization of RIPK1 in AD using [11C]CNY-10-based PET studies in combination with immunohistochemistry leveraging the 5xFAD mouse model. It is found that AD mice revealed RIPK1 brain signal significantly higher than WT control mice and that RIPK1 is closely related to amyloid plaques in the brain. The studies enable further translational studies of [11C]CNY-10 for AD and potentially other RIPK1-related human studies.

15.
Neurology ; 101(17): e1708-e1717, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37657939

RESUMO

BACKGROUND AND OBJECTIVES: In a proportion of patients, dementia with Lewy bodies (DLB) is associated with Alzheimer disease (AD) copathology, which is linked to accelerated cognitive decline and more extensive cortical atrophy. The objective was to evaluate the relationship between a biomarker of AD copathology, plasma tau phosphorylated at residue 181 (ptau181), and the treatment effects of the p38α kinase inhibitor neflamapimod, which targets the cholinergic degenerative process in DLB. METHODS: The AscenD-LB study was a phase 2a, randomized (1:1), 16-week, placebo-controlled clinical trial of neflamapimod in DLB, the main results of which have been published. After the study was completed (i.e., post hoc), pretreatment plasma ptau181 levels were determined and participants were grouped based on a cutoff for AD pathology of 2.2 pg/mL (established in a separate cohort to identify AD from healthy controls). Clinical outcomes for the comparison of placebo with neflamapimod 40 mg three times daily (TID; the higher and more clinically active of 2 doses studied) were analyzed using mixed models for repeated measures within each subgroup (baseline plasma ptau181 < and ≥2.2 pg/mL). RESULTS: Pretreatment plasma ptau181 levels were determined in eighty-five participants with mild-to-moderate DLB receiving cholinesterase inhibitors, with 45 participants below and 40 above the 2.2 pg/mL cutoff at baseline. In the 16-week treatment period, in the comparison of placebo with neflamapimod 40 mg TID, for all end points evaluated, improvements with neflamapimod treatment were greater in participants below the cutoff, compared with those above the cutoff. In addition, participants below the ptau181 cutoff at baseline showed significant improvement over placebo in an attention composite measure (+0.42, 95% CI 0.07-0.78, p = 0.023, d = 0.78), the Clinical Dementia Rating Scale Sum of Boxes (-0.60, 95% CI -1.04 to -0.06, p = 0.031, d = 0.70), the Timed Up and Go test (-3.1 seconds, 95% CI -4.7 to -1.6, p < 0.001, d = 0.74), and International Shopping List Test-Recognition (+1.4, 95% CI 0.2-2.5, p = 0.024, d = 1.00). DISCUSSION: Exclusion of patients with elevated plasma ptau181, potentially through excluding patients with extensive cortical neurodegeneration, enriches for a patient with DLB population that is more responsive to neflamapimod. More generally, plasma biomarkers of AD copathology at study entry should be considered as stratification variables in DLB clinical trials. TRIAL REGISTRATION INFORMATION: NCT04001517 at ClinicalTrials.gov.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Humanos , Doença de Alzheimer/patologia , Biomarcadores , Inibidores da Colinesterase/uso terapêutico , Doença por Corpos de Lewy/tratamento farmacológico , Doença por Corpos de Lewy/complicações , Equilíbrio Postural , Inibidores de Proteínas Quinases/uso terapêutico , Estudos de Tempo e Movimento
16.
J Alzheimers Dis ; 91(4): 1557-1572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36641682

RESUMO

BACKGROUND: Alzheimer's disease (AD) is associated with EEG changes across the sleep-wake cycle. As the brain is a non-linear system, non-linear EEG features across behavioral states may provide an informative physiologic biomarker of AD. Multiscale fluctuation dispersion entropy (MFDE) provides a sensitive non-linear measure of EEG information content across a range of biologically relevant time-scales. OBJECTIVE: To evaluate MFDE in awake and sleep EEGs as a potential biomarker for AD. METHODS: We analyzed overnight scalp EEGs from 35 cognitively normal healthy controls, 23 participants with mild cognitive impairment (MCI), and 19 participants with mild dementia due to AD. We examined measures of entropy in wake and sleep states, including a slow-to-fast-activity ratio of entropy (SFAR-entropy). We compared SFAR-entropy to linear EEG measures including a slow-to-fast-activity ratio of power spectral density (SFAR-PSD) and relative alpha power, as well as to cognitive function. RESULTS: SFAR-entropy differentiated dementia from MCI and controls. This effect was greatest in REM sleep, a state associated with high cholinergic activity. Differentiation was evident in the whole brain EEG and was most prominent in temporal and occipital regions. Five minutes of REM sleep was sufficient to distinguish dementia from MCI and controls. Higher SFAR-entropy during REM sleep was associated with worse performance on the Montreal Cognitive Assessment. Classifiers based on REM sleep SFAR-entropy distinguished dementia from MCI and controls with high accuracy, and outperformed classifiers based on SFAR-PSD and relative alpha power. CONCLUSION: SFAR-entropy measured in REM sleep robustly discriminates dementia in AD from MCI and healthy controls.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência , Humanos , Doença de Alzheimer/complicações , Sono REM/fisiologia , Entropia , Eletroencefalografia , Demência/complicações
17.
Res Sq ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163040

RESUMO

Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP mice. The power but not the frequency of astrocytic calcium transients was reduced in APP mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.

18.
Sci Rep ; 13(1): 13075, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567942

RESUMO

Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP/PS1 mice. The power but not the frequency of astrocytic calcium transients was reduced in APP/PS1 mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Optogenética/efeitos adversos , Cálcio , Astrócitos/metabolismo , Camundongos Transgênicos , Cálcio da Dieta , Modelos Animais de Doenças , Encéfalo/metabolismo , Progressão da Doença , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética
19.
Mol Neurodegener ; 18(1): 93, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041158

RESUMO

BACKGROUND: Alzheimer's disease (AD) patients exhibit memory disruptions and profound sleep disturbances, including disruption of deep non-rapid eye movement (NREM) sleep. Slow-wave activity (SWA) is a major restorative feature of NREM sleep and is important for memory consolidation. METHODS: We generated a mouse model where GABAergic interneurons could be targeted in the presence of APPswe/PS1dE9 (APP) amyloidosis, APP-GAD-Cre mice. An electroencephalography (EEG) / electromyography (EMG) telemetry system was used to monitor sleep disruptions in these animals. Optogenetic stimulation of GABAergic interneurons in the anterior cortex targeted with channelrhodopsin-2 (ChR2) allowed us to examine the role GABAergic interneurons play in sleep deficits. We also examined the effect of optogenetic stimulation on amyloid plaques, neuronal calcium as well as sleep-dependent memory consolidation. In addition, microglial morphological features and functions were assessed using confocal microscopy and flow cytometry. Finally, we performed sleep deprivation during optogenetic stimulation to investigate whether sleep restoration was necessary to slow AD progression. RESULTS: APP-GAD-Cre mice exhibited impairments in sleep architecture including decreased time spent in NREM sleep, decreased delta power, and increased sleep fragmentation compared to nontransgenic (NTG) NTG-GAD-Cre mice. Optogenetic stimulation of cortical GABAergic interneurons increased SWA and rescued sleep impairments in APP-GAD-Cre animals. Furthermore, it slowed AD progression by reducing amyloid deposition, normalizing neuronal calcium homeostasis, and improving memory function. These changes were accompanied by increased numbers and a morphological transformation of microglia, elevated phagocytic marker expression, and enhanced amyloid ß (Aß) phagocytic activity of microglia. Sleep was necessary for amelioration of pathophysiological phenotypes in APP-GAD-Cre mice. CONCLUSIONS: In summary, our study shows that optogenetic targeting of GABAergic interneurons rescues sleep, which then ameliorates neuropathological as well as behavioral deficits by increasing clearance of Aß by microglia in an AD mouse model.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Camundongos Transgênicos , Optogenética , Cálcio/metabolismo , Sono , Neurônios GABAérgicos/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética
20.
Res Sq ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38196602

RESUMO

Background: Associations between phenotypic traits, environmental exposures, and Parkinson's disease have largely been evaluated one-by-one, piecemeal, and pre-selections. A comprehensive picture of comorbidities, phenotypes, exposures, and polypharmacy characterizing the complexity and heterogeneity of real-world patients presenting to academic movement disorders clinics in the US is missing. Objectives: To portrait the complexity of features associated with patients with Parkinson's disease in a study of 933 cases and 291 controls enrolled in the Harvard Biomarkers Study. Methods: The primary analysis evaluated 64 health features for associations with Parkinson's using logistic regression adjusting for age and sex. We adjusted for multiple testing using the false discovery rate (FDR) with £ 0.05 indicating statistical significance. Exploratory analyses examined feature correlation clusters and feature combinations. Results: Depression (OR = 3.11, 95% CI 2.1 to 4.71), anxiety (OR = 3.31, 95% CI 2.01-5.75), sleep apnea (OR 2.58, 95% CI 1.47-4.92), and restless leg syndrome (RLS; OR 4.12, 95% CI 1.81-12.1) were significantly more common in patients with Parkinson's than in controls adjusting for age and sex with FDR £ 0.05. The prevalence of depression, anxiety, sleep apnea, and RLS were correlated, and these diseases formed part of a larger cluster of mood traits and sleep traits linked to PD. Exposures to pesticides (OR 1.87, 95% CI 1.37-2.6), head trauma (OR 2.33, 95% CI 1.51-3.73), and smoking (OR 0.57, 95% CI 0.43-0.75) were significantly associated with the disease consistent with previous studies. Vitamin supplementation with cholecalciferol (OR 2.18, 95% CI 1.4-3.45) and coenzyme Q10 (OR 2.98, 95% CI 1.89-4.92) was more commonly used by patients than controls. Cumulatively, 43% (398 of 933) of Parkinson's patients had at least one psychiatric or sleep disorder, compared to 21% (60 of 291) of healthy controls. Conclusions: 43% of Parkinson's patients seen at Harvard-affiliated teaching hospitals have depression, anxiety, and disordered sleep. This syndromic cluster of mood and sleep traits may be pathophysiologically linked and clinically important.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa