Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 23(1): 1136, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993804

RESUMO

BACKGROUND: The lactate receptor GPR81 contributes to cancer development through unclear mechanisms. Here, we investigate the roles of GPR81 in three-dimensional (3D) and in vivo growth of breast cancer cells and study the molecular mechanisms involved. METHODS: GPR81 was stably knocked down (KD) in MCF-7 human breast cancer cells which were subjected to RNA-seq analysis, 3D growth, in situ- and immunofluorescence analyses, and cell viability- and motility assays, combined with KD of key GPR81-regulated genes. Key findings were additionally studied in other breast cancer cell lines and in mammary epithelial cells. RESULTS: GPR81 was upregulated in multiple human cancer types and further upregulated by extracellular lactate and 3D growth in breast cancer spheroids. GPR81 KD increased spheroid necrosis, reduced invasion and in vivo tumor growth, and altered expression of genes related to GO/KEGG terms extracellular matrix, cell adhesion, and Notch signaling. Single cell in situ analysis of MCF-7 cells revealed that several GPR81-regulated genes were upregulated in the same cell clusters. Notch signaling, particularly the Notch ligand Delta-like-4 (DLL4), was strikingly downregulated upon GPR81 KD, and DLL4 KD elicited spheroid necrosis and inhibited invasion in a manner similar to GPR81 KD. CONCLUSIONS: GPR81 supports breast cancer aggressiveness, and in MCF-7 cells, this occurs at least in part via DLL4. Our findings reveal a new GPR81-driven mechanism in breast cancer and substantiate GPR81 as a promising treatment target.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Ácido Láctico/metabolismo , Ligantes , Transdução de Sinais , Necrose , Receptor Notch1/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457141

RESUMO

Neuroblastoma is the most common extracranial solid tumor of childhood, with heterogeneous clinical manifestations ranging from spontaneous regression to aggressive metastatic disease. The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that senses plasmatic fluctuation in the extracellular concentration of calcium and plays a key role in maintaining calcium homeostasis. We have previously reported that this receptor exhibits tumor suppressor properties in neuroblastoma. The activation of CaSR with cinacalcet, a positive allosteric modulator of CaSR, reduces neuroblastoma tumor growth by promoting differentiation, endoplasmic reticulum (ER) stress and apoptosis. However, cinacalcet treatment results in unmanageable hypocalcemia in patients. Based on the bias signaling shown by calcimimetics, we aimed to identify a new drug that might exert tumor-growth inhibition similar to cinacalcet, without affecting plasma calcium levels. We identified a structurally different calcimimetic, AC-265347, as a promising therapeutic agent for neuroblastoma, since it reduced tumor growth by induction of differentiation, without affecting plasma calcium levels. Microarray analysis suggested biased allosteric modulation of the CaSR signaling by AC-265347 and cinacalcet towards distinct intracellular pathways. No upregulation of genes involved in calcium signaling and ER stress were observed in patient-derived xenografts (PDX) models exposed to AC-265347. Moreover, the most significant upregulated biological pathways promoted by AC-265347 were linked to RHO GTPases signaling. AC-265347 upregulated cancer testis antigens (CTAs), providing new opportunities for CTA-based immunotherapies. Taken together, this study highlights the importance of the biased allosteric modulation when targeting GPCRs in cancer. More importantly, the capacity of AC-265347 to promote differentiation of malignant neuroblastoma cells provides new opportunities, alone or in combination with other drugs, to treat high-risk neuroblastoma patients.


Assuntos
Hipocalcemia , Neuroblastoma , Cálcio/metabolismo , Cinacalcete/farmacologia , Humanos , Masculino , Neuroblastoma/tratamento farmacológico , Receptores de Detecção de Cálcio/metabolismo
3.
Ann Rheum Dis ; 77(10): 1490-1497, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29959183

RESUMO

OBJECTIVES: Bone destruction in rheumatoid arthritis is mediated by osteoclasts (OC), which are derived from precursor cells of the myeloid lineage. The role of the two monocyte subsets, classical monocytes (expressing CD115, Ly6C and CCR2) and non-classical monocytes (which are CD115 positive, but low in Ly6C and CCR2), in serving as precursors for OC in arthritis is still elusive. METHODS: We investigated CCR2-/- mice, which lack circulating classical monocytes, crossed into hTNFtg mice for the extent of joint damage. We analysed monocyte subsets in hTNFtg and K/BxN serum transfer arthritis by flow cytometry. We sorted monocyte subsets and analysed their potential to differentiate into OC and their transcriptional response in response to RANKL by RNA sequencing. With these data, we performed a gene ontology enrichment analysis and gene set enrichment analysis. RESULTS: We show that in hTNFtg arthritis local bone erosion and OC generation are even enhanced in the absence of CCR2. We further show the numbers of non-classical monocytes in blood are elevated and are significantly correlated with histological signs of joint destruction. Sorted non-classical monocytes display an increased capacity to differentiate into OCs. This is associated with an increased expression of signal transduction components of RANK, most importantly TRAF6, leading to an increased responsiveness to RANKL. CONCLUSION: Therefore, non-classical monocytes are pivotal cells in arthritis tissue damage and a possible target for therapeutically intervention for the prevention of inflammatory joint damage.


Assuntos
Artrite Experimental/fisiopatologia , Artrite Reumatoide/fisiopatologia , Reabsorção Óssea/fisiopatologia , Monócitos/fisiologia , Osteoclastos/fisiologia , Animais , Artrite Experimental/complicações , Artrite Reumatoide/complicações , Reabsorção Óssea/etiologia , Diferenciação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores CCR2/metabolismo , Transdução de Sinais/fisiologia , Fator 6 Associado a Receptor de TNF/metabolismo
4.
J Autoimmun ; 82: 74-84, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28545737

RESUMO

Synovial fibroblasts are key cells orchestrating the inflammatory response in arthritis. Here we demonstrate that loss of miR-146a, a key epigenetic regulator of the innate immune response, leads to increased joint destruction in a TNF-driven model of arthritis by specifically regulating the behavior of synovial fibroblasts. Absence of miR-146a in synovial fibroblasts display a highly deregulated gene expression pattern and enhanced proliferation in vitro and in vivo. Deficiency of miR-146a induces deregulation of tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) in synovial fibroblasts, leading to increased proliferation. In addition, loss of miR-146a shifts the metabolic state of fibroblasts towards glycolysis and augments the ability of synovial fibroblasts to support the generation of osteoclasts by controlling the balance of osteoclastogenic regulatory factors receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). Bone marrow transplantation experiments confirmed the importance of miR-146a in the radioresistant mesenchymal compartment for the control of arthritis severity, in particular for inflammatory joint destruction. This study therefore identifies microRNA-146a as an important local epigenetic regulator of the inflammatory response in arthritis. It is a central element of an anti-inflammatory feedback loop in resident synovial fibroblasts, who are orchestrating the inflammatory response in chronic arthritis. MiR-146a restricts their activation, thereby preventing excessive tissue damage during arthritis.


Assuntos
Artrite/genética , Artrite/metabolismo , Fibroblastos/metabolismo , Articulações/metabolismo , Articulações/patologia , MicroRNAs/genética , Animais , Artrite/patologia , Artrite Experimental , Reabsorção Óssea/genética , Proliferação de Células , Modelos Animais de Doenças , Fibroblastos/patologia , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Interferência de RNA , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
Mol Oncol ; 13(9): 1959-1975, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31293052

RESUMO

We have previously reported the expression of parathyroid hormone-like hormone (PTHLH) in well-differentiated, Schwannian stroma-rich neuroblastic tumors. The aim of this study was to functionally assess the role of PTHLH and its receptor, PTH1R, in neuroblastoma. Stable knockdown of PTHLH and PTH1R was conducted in neuroblastoma cell lines to investigate the succeeding phenotype induced both in vitro and in vivo. Downregulation of PTHLH reduced MYCN expression and subsequently induced cell cycle arrest, senescence, and migration and invasion impairment in a MYCN-amplified, TP53-mutated neuroblastoma cell line. These phenotypes were associated with reduced tumorigenicity in a murine model. We also show that PTHLH expression is not under the control of the calcium-sensing receptor in neuroblastoma. Conversely, its production is stimulated by epidermal growth factor receptor (EGFR). Accordingly, irreversible EGFR inhibition with canertinib abolished PTHLH expression. The oncogenic role of PTHLH appeared to be a consequence of its intracrine function, as downregulation of its receptor, PTH1R, increased anchorage-independent growth and induced a more undifferentiated, invasive phenotype. Respectively, high PTH1R mRNA expression was found in MYCN nonamplified primary tumors and also significantly associated with other prognostic factors of good outcome. This study provides the first evidence of the dual role of PTHLH in the behavior of neuroblastomas. Moreover, the identification of EGFR as a transcriptional regulator of PTHLH in neuroblastoma provides a novel therapeutic opportunity to promote a less aggressive tumor phenotype through irreversible inhibition of EGFR tyrosine kinase activity.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/biossíntese , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Mutação , Neuroblastoma/genética , Neuroblastoma/patologia , Proteína Relacionada ao Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Front Immunol ; 10: 1367, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275315

RESUMO

MicroRNA (miR) 155 has been implicated in the regulation of innate and adaptive immunity as well as autoimmune processes. Importantly, it has been shown to regulate several antiviral responses, but its contribution to the immune response against cytopathic viruses such as vesicular stomatitis virus (VSV) infections is not known. Using transgenic/recombinant VSV expressing ovalbumin, we show that miR-155 is crucially involved in regulating the T helper cell response against this virus. Our experiments indicate that miR-155 in CD4+ T cells controls their activation, proliferation, and cytokine production in vitro and in vivo upon immunization with OVA as well as during VSV viral infection. Using intravital multiphoton microscopy we analyzed the interaction of antigen presenting cells (APCs) and T cells after OVA immunization and found impaired complex formation when using miR-155 deficient CD4+ T cells compared to wildtype CD4+ T cells ex vivo. In contrast, miR-155 was dispensable for the maturation of myeloid APCs and for their T cell stimulatory capacity. Our data provide the first evidence that miR-155 is required for efficient CD4+ T cell activation during anti-viral defense by allowing robust APC-T cell interaction required for activation and cytokine production of virus specific T cells.


Assuntos
Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , MicroRNAs/genética , Linfócitos T Auxiliares-Indutores/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Transferência Adotiva , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células Apresentadoras de Antígenos/imunologia , Proliferação de Células/genética , Citocinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Vírus da Estomatite Vesicular Indiana/genética
7.
Arthritis Res Ther ; 17: 230, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26307404

RESUMO

INTRODUCTION: Autoreactive T cells are a central element in many systemic autoimmune diseases. The generation of these pathogenic T cells is instructed by antigen-presenting cells (APCs). However, signaling pathways in APCs that drive autoimmune diseases, such as rheumatoid arthritis, are not understood. METHODS: We measured phenotypic maturation, cytokine production and induction of T cell proliferation of APCs derived from wt mice and mice with a myeloid-specific deletion of PTEN (myeloid PTEN(-/-)) in vitro and in vivo. We induced collagen-induced arthritis (CIA) and K/BxN serum transfer arthritis in wt and myeloid-specific PTEN(-/-) mice. We measured the cellular composition of lymph nodes by flow cytometry and cytokines in serum and after ex vivo stimulation of T cells. RESULTS: We show that myeloid-specific PTEN(-/-) mice are almost protected from CIA. Myeloid-specific deletion of PTEN leads to a significant reduction of cytokine expression pivotal for the induction of systemic autoimmunity such as interleukin (IL)-23 and IL-6, leading to a significant reduction of a Th17 type of immune response characterized by reduced production of IL-17 and IL-22. In contrast, myeloid-specific PTEN deficiency did not affect K/BxN serum transfer arthritis, which is independent of the adaptive immune system and solely depends on innate effector functions. CONCLUSIONS: These data demonstrate that the presence of PTEN in myeloid cells is required for the development of CIA. Deletion of PTEN in myeloid cells inhibits the development of autoimmune arthritis by preventing the generation of a pathogenic Th17 type of immune response.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Artrite Experimental/imunologia , Doenças Autoimunes/imunologia , PTEN Fosfo-Hidrolase/imunologia , Células Th17/imunologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Western Blotting , Citocinas/sangue , Citocinas/genética , Citocinas/imunologia , Citometria de Fluxo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Th17/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa