Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 83(4): 916-928, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34269858

RESUMO

MArine STramenopiles (MASTs) have been recognized as parts of heterotrophic protists and contribute substantially to protist abundances in the ocean. However, little is known about their spatiotemporal variations with respect to environmental and biological factors. The objectives of this study are to use canonical correspondence analysis to investigate how MASTs communities are shaped by environmental variables, and co-occurrence networks to examine their potential interactions with prokaryotic communities. Our dataset came from the southern East China Sea (sECS) in the subtropical northwestern Pacific, and involved 14 cruises along a coastal-oceanic transect, each of which sampled surface water from 4 to 7 stations. MASTs communities were revealed by metabarcoding of 18S rDNA V4 region. Most notably, MAST-9 had a high representation in warm waters in terms of read number and diversity. Subclades of MAST-9C and -9D showed slightly different niches, with MAST-9D dominating in more coastal waters where concentrations of nitrite and Synechococcus were higher. MAST-1C was a common component of colder water during spring. Overall, canonical correspondence analysis showed that MASTs communities were significantly influenced by temperature, nitrite and Synechococcus concentrations. The co-occurrence networks showed that certain other minor prokaryotic taxa can influence MAST communities. This study provides insight into how MASTs communities varied with environmental and biological variables.


Assuntos
Estramenópilas , Synechococcus , Biodiversidade , Nitritos , Oceano Pacífico , Filogenia , Água do Mar , Água
2.
Microb Ecol ; 77(3): 607-615, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30187089

RESUMO

Mixotrophic haptophytes comprise one of several important groups of mixotrophic nanoflagellates in the pelagic environment. This study aimed to investigate if phagotrophy in mixotrophic haptophytes is regulated by light or other factors in the surface (SE) and bottom (BE) of the euphotic zone in the subtropical northwestern Pacific Ocean. We estimated the rates of bacterial ingestion by haptophytes using fluorescently labeled bacteria (FLBs) and fluorescence in situ hybridization. Haptophyte diversity and abundance were also investigated in the same sampling area. The annual mean abundance of haptophytes was 419 ± 85.6 cells mL-1 in both SE and BE. Cells 3-5 µm in size were the dominant group in all haptophytes and accounted for majority of bacteria standing stock removed by haptophytes (53%). Most haptophyte ingestion rates (IRs) were not significantly different between the two layers (average SE ingestion rate: 12.5 ± 2.29 bac Hap-1 h-1; BE: 14.7 ± 3.03 bac Hap-1 h-1). Furthermore, the haptophyte IRs were negatively correlated with nitrate concentrations in the SE and positively correlated with bacterial abundances in the BE, which accounts for the significantly high IRs in August 2012 and 2013. These findings imply that mixotrophic haptophytes in this region had different factors affecting phagotrophy to adapt to the ambient light intensity alterations between SE and BE.


Assuntos
Haptófitas/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Comportamento Alimentar , Haptófitas/química , Haptófitas/efeitos da radiação , Cinética , Luz , Oceano Pacífico
3.
J Eukaryot Microbiol ; 65(6): 792-803, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29655213

RESUMO

Ribosomal RNA (rRNA) has been regarded as a proxy for metabolic activity and population growth in microbes, but the limitations and assumptions of this approach should be better defined, particularly in eukaryotic microalgae. In this study, the 18S rRNA/rDNA ratio of a marine diatom, Skeletonema tropicum, was examined in batch and semi-continuous cultures subjected to low nitrogen and phosphorus treatments at a temperature of 20 °C. In the semi-continuous cultures, the measured 18S rRNA/rDNA ratio ranged from 4.0 × 102 to 5.0 × 103 , and the logarithmic form of this ratio increased linearly with the population growth rate under both low nitrogen and low phosphorus conditions. In batch cultures grown under low nitrogen or low phosphorus conditions, log (rRNA/rDNA) also increased linearly with growth rate when the latter ranged between -0.4 and 1.5 day-1 . The 18S rRNA/rDNA ratios of Skeletonema sampled from in the southern East China Sea were substantially lower than measured from laboratory cultures. Among the field samples, ratios obtained at a coastal station were higher than those obtained farther offshore. These results imply higher growth rate at the coastal station, but the influences of other factors, such as cell size and temperature, cannot be ruled out.


Assuntos
DNA Ribossômico/genética , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/genética , RNA Ribossômico 18S/genética , Sequência de Bases , Técnicas de Cultura de Células , China , DNA/isolamento & purificação , Diatomáceas/isolamento & purificação , Nitrogênio , Fósforo , Crescimento Demográfico , RNA/isolamento & purificação , Água do Mar/microbiologia , Temperatura
4.
J Eukaryot Microbiol ; 64(3): 349-359, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27633146

RESUMO

Photosynthetic picoeukaryotes (PPEs) are important constituents in picoplankton communities in many marine ecosystems. However, little is known about their community composition in the subtropical coastal waters of the Northwestern Pacific Ocean. In order to study their taxonomic composition, this study constructed 18S rRNA gene libraries using flow cytometric sorting during the warm season. The results show that, after diatoms, prasinophyte clones are numerically dominant. Within prasinophytes, Micromonas produced the most common sequences, and included clades II, III, IV, and VI. We are establishing the new Micromonas clade VI based on our phylogenetic analysis. Sequences of this clade have previously been retrieved from the South China Sea and Red Sea, indicating a worldwide distribution, but this is the first study to detect clade VI in the coastal waters of Taiwan. The TSA-FISH results indicated that Micromonas clade VI peaked in the summer (~4 × 102  cells/ml), accounting for one-fifth of Micromonas abundance on average. Overall, Micromonas contributed half of Mamiellophyceae abundance, while Mamiellophyceae contributed 40% of PPE abundance. This study demonstrates the importance of Micromonas within the Mamiellophyceae in a subtropical coastal ecosystem.


Assuntos
Clorófitas/classificação , Ecossistema , Eucariotos/classificação , Fotossíntese , Filogenia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Sequência de Bases , Contagem de Células , Clorófitas/genética , Classificação , Diatomáceas/classificação , Diatomáceas/genética , Eucariotos/genética , Biblioteca Gênica , Hibridização In Situ , Biologia Marinha , Oceano Pacífico , Plâncton/classificação , Plâncton/genética , RNA Ribossômico 18S/genética , Salinidade , Estações do Ano , Água do Mar , Taiwan , Temperatura
5.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865298

RESUMO

Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models.


Assuntos
Biomassa , Cadeia Alimentar , Plâncton/fisiologia , Oceano Pacífico , Taiwan
6.
Mol Ecol ; 24(6): 1374-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25689485

RESUMO

In this study, the mRNA levels of the Nrt2 nitrate transporter gene were used as a molecular indicator of nitrogen status in two dominant diatom groups, Skeletonema and Chaetoceros, which inhabit the southern East China Sea (ECS). To accurately interpret the abundance of Nrt2 transcripts in situ, maximum and minimum expression levels were determined under conditions of nitrogen deprivation and ammonium addition, respectively. In August 2010, Nrt2 transcript levels in Skeletonema at the inner shelf region exhibited a mean of 111 mmole/(mole EFL); at the mid-shelf region, the mean Nrt2 mRNA levels were 298 mmole/(mole EFL), which was very close to the maximum levels observed under nitrogen starvation. By contrast, the Nrt2 transcript levels in Chaetoceros were low at all of the shelf locations, except at one station in the mid-shelf region. The cross-shelf mean was 2.86 mmole/(mole EFL), which was similar to the expression levels observed in cultured Chaetoceros under conditions of sufficient ammonium. Similar expression patterns were observed in diatoms in the southern ECS in June 2011, but the Nrt2 transcript levels in Skeletonema at the inner shelf region were reduced to a mean of 28.6 mmole/(mole EFL). Regression analysis indicated that cell abundance and Nrt2 expression were closely related to the nutricline depth in the coastward half of the southern ECS for Skeletonema but not for Chaetoceros. These results indicate that the evaluated species differ in nitrogen status, which may reflect their evolutionary strategies to survive in a fluctuating marine environment.


Assuntos
Proteínas de Transporte de Ânions/genética , Diatomáceas/genética , Nitrogênio/metabolismo , China , Diatomáceas/classificação , Diatomáceas/metabolismo , Transportadores de Nitrato , Oceanos e Mares , RNA Mensageiro/genética , Água do Mar/química
7.
Microb Ecol ; 70(3): 677-88, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25851446

RESUMO

The aim of this study was to elucidate how flooding of the Changjiang River affects the assemblage composition of phycoerythrin-rich (PE-rich) Synechococcus at the surface of the East China Sea (ECS). During non-flooding summers (e.g., 2009), PE-rich Synechococcus usually thrive at the outer edge of the Changjiang River diluted water coverage (CDW; salinity ≤31 PSU). In the summer of 2010, a severe flood occurred in the Changjiang River basin. The plentiful freshwater injection resulted in the expansion of the CDW over half of the ECS and caused PE-rich cells to show a uniform distribution pattern, with decreased abundance compared with the non-flooding summer. The phylogenetic diversity of 16S rRNA gene sequences indicated that the flooding event also shifted the picoplankton community composition from being dominated by Synechococcus, mainly attributed to the clade II lineage, to various orders of heterotrophic bacteria, including Actinobacteria, Flavobacteria, α-Proteobacteria, and γ-Proteobacteria. As an increasing number of studies have proposed that global warming might result in more frequent floods, combining this perspective with the information obtained from our previous [1] and this studies yield a more comprehensive understanding of the relationship between the composition of the marine Synechococcus assemblage and global environmental changes.


Assuntos
Inundações , Microbiota , Synechococcus/fisiologia , China , DNA Bacteriano/genética , Dados de Sequência Molecular , Oceano Pacífico , Ficoeritrina/metabolismo , RNA Ribossômico 16S/genética , Estações do Ano , Água do Mar/microbiologia , Análise de Sequência de DNA , Synechococcus/genética
8.
Microb Ecol ; 67(2): 273-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24096886

RESUMO

Synechococcus spp. have been suggested as the primary component of picophytoplankton in the East China Sea (ECS). However, the influences of sudden environmental changes on Synechococcus assemblage composition have not yet been investigated. In the summer of 2010, a disastrous flood occurred in the Changjiang River basin. To improve our understanding of how this flood affected the Synechococcus ecology on the ECS surface, their assemblages and distributions have been described using two-laser flow cytometry and phylogenetic analysis of the phycocyanin operon. During the nonflooding summer of 2009, phycoerythrin-rich (PE-rich) Synechococcus thrived near the outer boundary of the Changjiang River diluted water (CDW) coverage, while phycocyanin-rich (PC-rich) Synechococcus predominated inside the turbid CDW with a transparency of <80%. During the 2010 summer, flooding expanded the CDW coverage area to over half of the ECS. PE-rich cells showed a homogeneous distribution and a decline in abundance, while the spatial pattern of the PC-rich Synechococcus resembled the pattern from 2009. Based on the phycocyanin operon phylogeny, the Synechococcus in the ECS were categorized into five groups, ECS-1 to ECS-4 and ECS-PE, comprising a total of 19 operational taxonomic units. In the summer of 2009, ECS-2 dominated in the coast, and the ECS-3 and ECS-PE clades prevailed in the offshore waters. However, during the summer of 2010, ECS-4 and ECS-PE became the dominant strains. The injection of abundant anthropogenic pollutants and the enhancement of transparency within the CDW expansion area appear to be the factors needed to transiently alter the ecology of Synechococcus after flooding.


Assuntos
Rios/microbiologia , Synechococcus/classificação , Synechococcus/isolamento & purificação , Microbiologia da Água , Biodiversidade , China , DNA Bacteriano/genética , Ecologia , Inundações , Oceanos e Mares , Ficocianina/química , Ficoeritrina/química , Filogenia , Filogeografia , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA , Água/química
9.
Viruses ; 16(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932229

RESUMO

In mesoscale eddies, the chemical properties and biological composition are different from those in the surrounding water due to their unique physical processes. The mechanism of physical-biological coupling in warm-core eddies is unclear, especially because no studies have examined the effects of environmental factors on bacteria and viruses. The purpose of the present study was to examine the influence of an anticyclonic warm eddy on the relationship between bacterial and viral abundances, as well as viral activity (viral production), at different depths. At the core of the warm eddy, the bacterial abundance (0.48 to 2.82 × 105 cells mL-1) fluctuated less than that outside the eddy (1.12 to 7.03 × 105 cells mL-1). In particular, there was a four-fold higher viral-bacterial abundance ratio (VBR) estimated within the eddy, below the layer of the deep chlorophyll maximum, than outside the eddy. An anticyclonic warm eddy with downwelling at its center may contribute to viruses being transmitted directly into the deep ocean through adsorption on particulate organic matter while sinking. Overall, our findings provide valuable insights into the interaction between bacterial and viral abundances and their ecological mechanisms within a warm eddy.


Assuntos
Bactérias , Água do Mar , Clima Tropical , Vírus , Oceano Pacífico , Água do Mar/virologia , Água do Mar/microbiologia , Vírus/classificação , Ecossistema , Temperatura , Microbiologia da Água
10.
J Anim Ecol ; 82(5): 1052-61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23506226

RESUMO

1. The biodiversity-ecosystem functioning debate is a central topic in ecology. Recently, there has been a growing interest in size diversity because body size is sensitive to environmental changes and is one of the fundamental characteristics of organisms linking many ecosystem properties. However, how size diversity affects ecosystem functioning is an important yet unclear issue. 2. To fill the gap, with large-scale field data from the East China Sea, we tested the novel hypothesis that increasing zooplankton size diversity enhances top-down control on phytoplankton (H1) and compared it with five conventional hypotheses explaining the top-down control: flatter zooplankton size spectrum enhances the strength of top-down control (H2); nutrient enrichment lessens the strength of top-down control (H3); increasing zooplankton taxonomic diversity enhances the strength of top-down control (H4); increasing fish predation decreases the strength of top-down control of zooplankton on phytoplankton through trophic cascade (H5); increasing temperature intensifies the strength of top-down control (H6). 3. The results of univariate analyses support the hypotheses based on zooplankton size diversity (H1), zooplankton size spectrum (H2), nutrient (H3) and zooplankton taxonomic diversity (H4), but not the hypotheses based on fish predation (H5) and temperature (H6). More in-depth analyses indicate that zooplankton size diversity is the most important factor in determining the strength of top-down control on phytoplankton in the East China Sea. 4. Our results suggest a new potential mechanism that increasing predator size diversity enhances the strength of top-down control on prey through diet niche partitioning. This mechanism can be explained by the optimal predator-prey body-mass ratio concept. Suppose each size group of zooplankton predators has its own optimal phytoplankton prey size, increasing size diversity of zooplankton would promote diet niche partitioning of predators and thus elevates the strength of top-down control.


Assuntos
Biodiversidade , Tamanho Corporal/fisiologia , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Fitoplâncton/fisiologia , Zooplâncton/fisiologia , Animais , Biomassa , Dieta , Peixes , Oceano Pacífico , Água do Mar/química , Temperatura , Zooplâncton/classificação
11.
Mar Pollut Bull ; 191: 114975, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37121184

RESUMO

The transport and ultimate fate of per- and polyfluoroalkyl substances (PFASs) are generally considered to be influenced by partitioning behavior between water, suspended particulate matters (SPM), and sediments. This study examined the distribution and partitioning of the PFASs in the water, SPM, and sediments in a densely populated urban river-coastal system. The total concentrations of eight PFASs (∑8 PFASs) in the water phase, SPM, and sediments varied from 0.59 to 7.40 ng/L, 0.54 to 9.08 ng/g, and 0.05 to 0.13 ng/g, respectively. The PFAS concentrations in the water and SPM phase decreased as the salinity increased, confirming contaminant inputs from the upstream of the river to the estuary zone. Notably, the positive correlation between SPM-bound PFASs and transparent exopolymer particles (TEPs) content, providing first evidence that TEPs may accumulate and concentrate more PFASs on the SPM. Collectively, this results offers useful information about roles of TEPs in determining environmental fate of PFASs.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Rios , Matriz Extracelular de Substâncias Poliméricas/química , Material Particulado/análise , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água , China , Sedimentos Geológicos
12.
Biology (Basel) ; 12(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998023

RESUMO

The nutrient-scarce, warm, and high-salinity Kuroshio current has a profound impact on both the marine ecology of the northwestern Pacific Ocean and the global climate. This study aims to reveal the seasonal dynamics of picoplankton in the subtropical Kuroshio current. Our results showed that one of the picocyanobacteria, Synechococcus, mainly distributed in the surface water layer regardless of seasonal changes, and the cell abundance ranged from 104 to 105 cells mL-1. In contrast, the maximum concentration of the other picocyanobacteria, Prochlorococcus, was maintained at more than 105 cells mL-1 throughout the year. In the summer and the autumn, Prochlorococcus were mainly concentrated at the water layer near the bottom of the euphotic zone. They were evenly distributed in the euphotic zone in the spring and winter. The stirring effect caused by the monsoon determined their distribution in the water column. In addition, the results of 16S rRNA gene diversity analysis showed that the seasonal changes in the relative abundance of Synechococcus and Prochlorococcus in the surface water of each station accounted for 20 to 40% of the total reads. The clade II of Synechococcus and the High-light II of Prochlorococcus were the dominant strains in the waters all year round. Regarding other picoplankton, Proteobacteria and Actinobacteria occupied 45% and 10% of the total picoplankton in the four seasons. These data should be helpful for elucidating the impacts of global climate changes on marine ecology and biogeochemical cycles in the Western Boundary Currents in the future.

13.
mSystems ; 8(1): e0097022, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36511690

RESUMO

The presence of more species in the community of a sampling site (α diversity) typically increases ecosystem functions via nonrandom processes like resource partitioning. When considering multiple communities, we hypothesize that higher compositional difference (ß diversity) increases overall functions of these communities. Further, we hypothesize that the ß diversity effect is more positive when ß diversity is increased by nonrandom assembly processes. To test these hypotheses, we collected bacterioplankton along a transect of 6 sampling sites in the southern East China Sea in 14 cruises. For any pairs of the 6 sites within a cruise, we calculated the Bray-Curtis index to represent ß diversity and summed bacterial biomass as a proxy to indicate the overall function of the two communities. We then calculated deviation of observed mean pairwise phylogenetic similarities among species in two communities from random to represent the influences of nonrandom processes. The bacterial ß diversity was found to positively affect the summed bacterial biomass; however, the effect varied among cruises. Cross-cruise comparison indicated that the ß diversity effect increased with the nonrandom processes selecting for phylogenetically dissimilar species. This study extends biodiversity-ecosystem functioning research to the scale of multiple sites and enriches the framework by considering community assembly processes. IMPORTANCE The implications of our analyses are twofold. First, we emphasize the importance of studying ß diversity. We expanded the current biodiversity-ecosystem functioning framework from single to multiple sampling sites and investigated the influences of species compositional differences among sites on the overall functioning of these sites. Since natural ecological communities never exist alone, our analyses allow us to more holistically perceive the role of biodiversity in natural ecosystems. Second, we took community assembly processes into account to attain a more mechanistic understanding of the impacts of biodiversity on ecosystem functioning.


Assuntos
Biodiversidade , Ecossistema , Biomassa , Filogenia , Organismos Aquáticos , Bactérias/genética
14.
mSystems ; 8(2): e0101722, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36916988

RESUMO

Trade-offs between competitive ability and resistance to top-down control manifest the "kill-the-winner" hypothesis that explains how mortality caused by protists and viruses can promote bacterial diversity. However, the existence of such trade-offs has rarely been investigated in natural marine bacterial communities. To address this question, we conducted on-board dilution experiments to manipulate top-down control pressure (protists only or protists plus viruses [protists+viruses] combined) and then applied 16S rRNA gene high-throughput sequencing techniques to assess the responses of each bacterial taxon. Dilution experiments enabled us to measure the top-down-control-free growth rate as the competitive ability and top-down-control-caused mortality as the reverse of resistance to top-down control. Overall, bacterial taxa with higher top-down-control-free growth rates were accompanied by lower top-down-control-caused resistance. Furthermore, competition-resistance trade-offs were stronger and more consistent when top-down control was caused by protists+viruses combined than by protists only. When protists+viruses were diluted, the bacterial rank abundance distribution became steepened and evenness and richness were decreased. However, when protists were diluted, only richness decreased. Our results indicate the existence of competition-resistance trade-offs in marine microbes and demonstrate the positive impacts of such trade-offs on bacterial diversity. Regardless, the strength of the competition-resistance trade-offs and the impacts on bacterial diversity were contingent on whether top-down control was caused by protists+viruses combined or protists only. IMPORTANCE We addressed the "kill-the-winner" hypothesis from the perspective of its principle (the competition-resistance trade-off) in marine bacterial communities incubated in situ. Our results supported the existence of competition-resistance trade-offs and the positive effect on bacterial community diversity. The study linked theoretical expectations and complex natural systems and provided new knowledge regarding how top-down controls and competition trade-offs shaped natural bacterial communities.


Assuntos
Vírus , RNA Ribossômico 16S/genética , Bactérias/genética
15.
Appl Environ Microbiol ; 78(9): 3387-99, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22344659

RESUMO

Marine stramenopiles (MASTs) are a diverse suite of eukaryotic microbes found in marine environments. Several MAST lineages are thought to contain heterotrophic nanoflagellates. However, MASTs remain uncultured and data on distributions and trophic modes are limited. We investigated MASTs in provinces on the west and east sides of the North Pacific Subtropical Gyre, specifically the East China Sea (ECS) and the California Current system (CALC). For each province, DNA was sampled from three zones: coastal, mesotrophic transitional, and more oligotrophic euphotic waters. Along with diatoms, chrysophytes, and other stramenopiles, sequences were recovered from nine MAST lineages in the six ECS and four CALC 18S rRNA gene clone libraries. All but one of these libraries were from surface samples. MAST clusters 1, 3, 7, 8, and 11 were identified in both provinces, with MAST cluster 3 (MAST-3) being found the most frequently. Additionally, MAST-2 was detected in the ECS and MAST-4, -9, and -12 were detected in the CALC. Phylogenetic analysis indicated that some subclades within these lineages differ along latitudinal gradients. MAST-1A, -1B, and -1C and MAST-4 size and abundance estimates obtained using fluorescence in situ hybridization on 79 spring and summer ECS samples showed a negative correlation between size of MAST-1B and MAST-4 cells and temperature. MAST-1A was rarely detected, but MAST-1B and -1C and MAST-4 were abundant in summer and MAST-1C and MAST-4 were more so at the coast, with maximum abundances of 543 and 1,896 cells ml(-1), respectively. MAST-4 and Synechococcus abundances were correlated, and experimental work showed that MAST-4 ingests Synechococcus. Together with previous studies, this study helps refine hypotheses on distribution and trophic modes of MAST lineages.


Assuntos
Biodiversidade , Água do Mar/microbiologia , Estramenópilas/classificação , Estramenópilas/isolamento & purificação , California , China , Análise por Conglomerados , Dados de Sequência Molecular , Oceano Pacífico , Filogeografia , Análise de Sequência de DNA , Estramenópilas/genética
16.
Water Res ; 222: 118856, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35863277

RESUMO

The pervasiveness of microplastics (MPs) in global oceans is raising concerns about their adverse impacts on ecosystems. The mechanistic understanding of MP transport is critical for evaluating its fate, flux, and ecological risks specifically. Currently, bubble bursting is believed to represent an important route for MP transfer from sea surfaces to the atmosphere. However, the detailed mechanisms of the complex physico-chemical interactions between MPs, water composition, and gel particles in the air-sea interface remain unknown. Our results suggested three steps for MP transfer between air-sea phases: (1) MPs incorporating into gel aggregates in the water column; (2) further accumulation of plastic-gel aggregate in the surface layer phase; finally (3) ejection of aggregates from the sea when bubbles of trapped air rise to the surface and burst. The water composition (e.g., high salinity, gel concentration and viscosity) can modulate plastic-gel aggregation and subsequent transport from water to the atmosphere. The possible mechanism may be closely tied to the formation of plastic-gel via cation-linking bridges, thereby enhancing plastic-gel ejection into air. Collectively, this work offers unique insights into the role of marine plastic-gels in determining MP fate and transport, especially at air-sea interfaces. The data also provide a better understanding of the corresponding mechanism that may explain the fates of missing plastics in the ocean.


Assuntos
Microplásticos , Poluentes Químicos da Água , Atmosfera , Ecossistema , Monitoramento Ambiental , Géis , Plásticos/química , Água , Poluentes Químicos da Água/análise
17.
Mar Pollut Bull ; 181: 113840, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35732090

RESUMO

Seasonal and spatial distributions of total mercury (THg) in the Danshuei Estuary and adjacent coastal areas near the ocean outfall of Taipei, Taiwan, have been successfully investigated from May 2003 to January 2005. We found spatio-temporal variation in THg levels in the Danshuei coastal area was the result of sources and supplies of Hg. High THg concentrations in sediments and seawater were particularly found near the effluent outfall. Average THg levels (avg.: 9-22 ng L-1) were much higher than those in surrounding coastal seawaters (avg.:1-2 ng L-1). Organic carbon contents then played vital roles in controlling water and sedimentary Hg concentrations and occurrences. Hg enrichment factor (EF) as an index of contamination status in surface sediments of the Danshuei coastal area averaged 2.0 ± 0.8 (EFs > 1), indicating an extra non-crustal source from anthropogenic loadings. It implies the Dansheui coastal environment nearby the sewer outfall is facing Hg pollution.


Assuntos
Mercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Mercúrio/análise , Rios , Taiwan , Poluentes Químicos da Água/análise
18.
Mar Pollut Bull ; 167: 112288, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33836334

RESUMO

This study evaluates the rarely observed phenomenon of the simultaneous occurrences of phytoplankton blooms, hypoxia, and upwelling along the Zhejiang coast in the East China Sea. Results show that the upwelling uplifted bottom water to 5-10 m below the surface. In the upwelling region, phytoplankton blooms (Chl a = 10.9 µg L-1) occurred and hypoxia or low-oxygen appeared below the surface water. High concentrations of nitrate and phosphate were regenerated in the hypoxic regions, corresponding with mean values (± SD) of 16.9 (± 1.5) and 0.90 (± 0.14) µM, respectively. The upwelling expanded the region of hypoxic water, which nearly reached the surface, thereby increasing the threat to marine life. In addition to fluvial nutrients, the upwelling of water with high nutrient levels, especially phosphates, can enhance phytoplankton blooms. The results suggest that hypoxia can become more severe due to further decomposition of bloom-derived organic matter after blooms crash.


Assuntos
Fosfatos , Fitoplâncton , China , Humanos , Hipóxia , Fosfatos/análise , Estações do Ano
19.
Mar Pollut Bull ; 172: 112808, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34388451

RESUMO

Microplastics (MPs) are ubiquitous in oceans. Their transboundary transport and fate have aroused global attention. Taiwan is located close to the western boundary current-Kuroshio, is an excellent location to study of MP mobility in the global current and Pacific Garbage Patch. This study is the first investigation to understand the microplastic contamination from Taiwan to the Kuroshio. MP concentrations in the area varied from N.D. to 0.15 items m-3, with an average concentration of 0.05 ± 0.03 items m-3. The majority of MPs were polypropylene, polyethylene, polyethylene and terephthalate. We found two MP hotspots near the coastal zone. One additional hotspot was also identified in the "pristine" Kuroshio suggesting rivers and local currents may play critical roles in transporting or injecting MPs from Taiwan into the North Pacific Gyre. These findings suggest that marine environments are altered by anthropogenic disposal and provide needed data for modelling and prediction of MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Plásticos , Rios , Poluentes Químicos da Água/análise
20.
PLoS One ; 16(5): e0251344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34003828

RESUMO

Prey availability plays an important role in determining larval fish survival. Numerous studies have found close relationships between the density of mesozooplankton and larval fishes; however, emerging studies suggest that small-size zooplankton are more important prey for some larval fish species. One arising question is whether the size of zooplankton determines the relationship between zooplankton and larval fish community in natural environments. To address this question, we collected small-size (50-200 µm) zooplankton, mesozooplankton (> 330 µm), and larval fish using three different mesh-size (50, 330, 1000 µm, respectively) nets in the East China Sea, and examined their relationships in density. Both meso- and small-size zooplankton densities showed positive relationships with larval fish density, while the relationship is much stronger for the small-size zooplankton. Specifically, the smallest size classes (50-75 and 75-100 µm) of small-size zooplankton showed the highest positive relationships with larval fish density. Temperature, salinity, and chlorophyll-a concentration did not significantly explain larval fish density. Based on these findings, we demonstrate the importance of considering prey size when investigating prey availability for larval fishes.


Assuntos
Tamanho Corporal/fisiologia , Ecossistema , Peixes/fisiologia , Cadeia Alimentar , Comportamento Predatório , Zooplâncton/classificação , Animais , Larva , Temperatura , Zooplâncton/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa