Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Nature ; 625(7995): 516-522, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233617

RESUMO

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices1,2. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode3-5. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber6-8. Thus far, evaporable organic molecules9,10 and atomic-layer-deposited metal oxides11,12 have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.

2.
Nat Mater ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777873

RESUMO

Controlling topological phases of light allows the observation of abundant topological phenomena and the development of robust photonic devices. The prospect of more sophisticated control with topological photonic devices for practical implementations requires high-level programmability. Here we demonstrate a fully programmable topological photonic chip with large-scale integration of silicon photonic nanocircuits and microresonators. Photonic artificial atoms and their interactions in our compound system can be individually addressed and controlled, allowing the arbitrary adjustment of structural parameters and geometrical configurations for the observation of dynamic topological phase transitions and diverse photonic topological insulators. Individual programming of artificial atoms on the generic chip enables the comprehensive statistical characterization of topological robustness against relatively weak disorders, and counterintuitive topological Anderson phase transitions induced by strong disorders. This generic topological photonic chip can be rapidly reprogrammed to implement multifunctionalities, providing a flexible and versatile platform for applications across fundamental science and topological technologies.

3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115398

RESUMO

Label-free sensors are highly desirable for biological analysis and early-stage disease diagnosis. Optical evanescent sensors have shown extraordinary ability in label-free detection, but their potentials have not been fully exploited because of the weak evanescent field tails at the sensing surfaces. Here, we report an ultrasensitive optofluidic biosensor with interface whispering gallery modes in a microbubble cavity. The interface modes feature both the peak of electromagnetic-field intensity at the sensing surface and high-Q factors even in a small-sized cavity, enabling a detection limit as low as 0.3 pg/cm2 The sample consumption can be pushed down to 10 pL due to the intrinsically integrated microfluidic channel. Furthermore, detection of single DNA with 8 kDa molecular weight is realized by the plasmonic-enhanced interface mode.


Assuntos
Técnicas Biossensoriais/métodos , Microfluídica/métodos , Nanotecnologia/métodos
4.
Nano Lett ; 24(9): 2931-2938, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377049

RESUMO

Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.

5.
Phys Rev Lett ; 132(24): 243802, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949371

RESUMO

Orbital angular momentum (OAM) provides an additional degree of freedom for optical communication systems, and manipulating on-chip OAM is important in integrated photonics. However, there is no effective method to realize OAM topological charge conversion on chip. In this Letter, we propose a way to convert OAM by encircling two groups of exceptional points in different Riemann sheets. In our framework, any OAM conversion can be achieved on demand just by manipulating adiabatic and nonadiabatic evolution of modes in two on-chip waveguides. More importantly, the chiral OAM conversion is realized, which is of great significance since the path direction can determine the final topological charge order. Our Letter presents a special chiral behavior and provides a new method to manipulate OAM on the chip.

6.
Proc Natl Acad Sci U S A ; 118(22)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035175

RESUMO

Microlasers in near-degenerate supermodes lay the cornerstone for studies of non-Hermitian physics, novel light sources, and advanced sensors. Recent experiments of the stimulated scattering in supermode microcavities reported beating phenomena, interpreted as dual-mode lasing, which, however, contradicts their single-mode nature due to the clamped pump field. Here, we investigate the supermode Raman laser in a whispering-gallery microcavity and demonstrate experimentally its single-mode lasing behavior with a side-mode suppression ratio (SMSR) up to 37 dB, despite the emergence of near-degenerate supermodes by the backscattering between counterpropagating waves. Moreover, the beating signal is recognized as the transient interference during the switching process between the two supermode lasers. Self-injection is exploited to manipulate the lasing supermodes, where the SMSR is further improved by 15 dB and the laser linewidth is below 100 Hz.

7.
Nano Lett ; 23(18): 8643-8649, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37672749

RESUMO

Understanding ultrafast electronic dynamics of the interlayer excitonic states in atomically thin transition metal dichalcogenides is of importance in engineering valleytronics and developing excitonic integrated circuits. In this work, we experimentally explored the ultrafast dynamics of indirect interlayer excitonic states in monolayer type II WSe2/ReS2 heterojunctions using time-resolved photoemission electron microscopy, which reveals its anisotropic behavior. The ultrafast cooling and decay of excited-state electrons exhibit significant linear dichroism. The ab initio theoretical calculations provide unambiguous evidence that this linear dichroism result is primarily associated with the anisotropic nonradiative recombination of indirect interlayer excitonic states. Measuring time-resolved photoemission energy spectra, we have further revealed the ultrafast evolution of excited-state electrons in anisotropic indirect interlayer excitonic states. The findings have important implications for controlling the interlayer moiré excitonic effects and designing anisotropic optoelectronic devices.

8.
Nano Lett ; 23(16): 7327-7333, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37535438

RESUMO

We experimentally study photoemission from gold nanodisk arrays using space-, time-, and energy-resolved photoemission electron microscopy. When excited by a plasmonic resonant infrared (IR) laser pulse, plasmonic hotspots are generated owing to local surface plasmon resonance. Photoelectrons emitted from each plasmonic hotspot form a nanoscale and ultrashort electron pulse. When the system is excited by an extreme ultraviolet (EUV) laser pulse, a uniformly distributed photoelectron cloud is formed across the sample surface. When excited by the IR and EUV laser pulses together, both the photoemission image and kinetic energy vary significantly for the IR laser-generated electrons depending on the time delay between the two laser pulses. These observations are well explained by the Coulomb interaction with the EUV laser-generated electron cloud. Our study offers a feasible approach to manipulate the energy of electron pulse emitted from a plasmonic nanostructure on an ultrafast time scale.

9.
Nano Lett ; 23(20): 9547-9554, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37816225

RESUMO

Exploring ultrafast carrier dynamics is crucial for the materials' fundamental properties and device design. In this work, we employ time- and energy-resolved photoemission electron microscopy with tunable pump wavelengths from visible to near-infrared to reveal the ultrafast carrier dynamics of the elemental semiconductor tellurium. We find that two discrete sub-bands around the Γ point of the conduction band are involved in excited-state electron ultrafast relaxation and reveal that hot electrons first go through ultrafast intra sub-band cooling on a time scale of about 0.3 ps and then transfer from the higher sub-band to the lower one on a time scale of approximately 1 ps. Additionally, theoretical calculations reveal that the lower one has flat-band characteristics, possessing a large density of states and a long electron lifetime. Our work demonstrates that TR- and ER-PEEM with broad tunable pump wavelengths are powerful techniques in revealing the details of ultrafast carrier dynamics in time and energy domains.

10.
Opt Express ; 31(20): 31912-31921, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859005

RESUMO

Nitrogen ions pumped by intense femtosecond laser pulses give rise to optical amplification in the ultraviolet range. Here, we demonstrated that a seed light pulse carrying orbital angular momentum (OAM) can be significantly amplified in nitrogen plasma excited by a Gaussian femtosecond laser pulse. With the topological charge of ℓ = ±1, we observed an energy amplification of the seed light pulse by two orders of magnitude, while the amplified pulse carries the same OAM as the incident seed pulse. Moreover, we show that a spatial misalignment of the plasma amplifier with the OAM seed beam leads to an amplified emission of Gaussian mode without OAM, due to the special spatial profile of the OAM seed pulse that presents a donut-shaped intensity distribution. Utilizing this misalignment, we can implement an optical switch that toggles the output signal between Gaussian mode and OAM mode. This work not only certifies the phase transfer from the seed light to the amplified signal, but also highlights the important role of spatial overlap of the donut-shaped seed beam with the gain region of the nitrogen plasma for the achievement of OAM beam amplification.

11.
Opt Express ; 31(2): 3379-3389, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785332

RESUMO

We experimentally and theoretically study high-order harmonic generation in zinc oxide crystals irradiated by mid-infrared lasers. The trajectories are mapped to the far field spatial distribution of harmonics. The divergence angles of on-axis and off-axis parts exhibit different dependences on the order of the harmonics. This observation can be theoretically reproduced by the coherent interference between the short and long trajectories with dephasing time longer than 0.5 optical cycle. Further, the relative contribution of the short and long trajectories is demonstrated to be accurately controlled by a one-color or two-color laser on the attosecond time scale. This work provides a reliable method to determine the electron dephasing time and demonstrates a versatile control of trajectory interference in the solid high-order harmonic generation.

12.
Opt Express ; 31(6): 10348-10357, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157583

RESUMO

We report the slow-light enhanced spin-resolved in-plane emission from a single quantum dot (QD) in a photonic crystal waveguide (PCW). The slow light dispersions in PCWs are designed to match the emission wavelengths of single QDs. The resonance between two spin states emitted from a single QD and a slow light mode of a waveguide is investigated under a magnetic field with Faraday configuration. Two spin states of a single QD experience different degrees of enhancement as their emission wavelengths are shifted by combining diamagnetic and Zeeman effects with an optical excitation power control. A circular polarization degree up to 0.81 is achieved by changing the off-resonant excitation power. Strongly polarized photon emission enhanced by a slow light mode shows great potential to attain controllable spin-resolved photon sources for integrated optical quantum networks on chip.

13.
Opt Lett ; 48(15): 4069-4072, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527120

RESUMO

Parity-time (PT)-symmetry brings various opportunities for electromagnetic field manipulation and light-matter interaction, such as modification of spontaneous emission. However, previous works mainly focused on the behavior of spontaneous emission at exceptional points or in the PT-symmetry situation. Here, we theoretically demonstrate loss-induced Purcell enhancement in PT-broken whispering gallery microcavities. In the PT-broken phase, one of the supermodes decays slowly thereby playing a leading role in spontaneous emission. As the loss increases, the quality factor of this supermode is higher and the mode volume is smaller, so that the Purcell factors will be larger if the emitter is placed near the lossless cavity. Our findings indicate that loss can enhance the interaction between light and matter, which could be applied to single photon emission, non-Hermitian photonic devices, etc.

14.
Opt Lett ; 48(10): 2655-2658, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186732

RESUMO

Extracting the position of individual molecular probes with high precision is the basis and core of super-resolution microscopy. However, with the expectation of low-light conditions in life science research, the signal-to-noise ratio (SNR) decreases and signal extraction faces a great challenge. Here, based on temporally modulating the fluorescence emission at certain periodical patterns, we achieved super-resolution imaging with high sensitivity by largely suppressing the background noise. We propose simple bright-dim (BD) fluorescent modulation and delicate control by phase-modulated excitation. We demonstrate that the strategy can effectively enhance signal extraction in both sparsely and densely labeled biological samples, and thus improve the efficiency and precision of super-resolution imaging. This active modulation technique is generally applicable to various fluorescent labels, super-resolution techniques, and advanced algorithms, allowing a wide range of bioimaging applications.

15.
Phys Rev Lett ; 131(18): 186901, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977607

RESUMO

Transition metal dichalcogenide heterostructures have been extensively studied as a platform for investigating exciton physics. While heterobilayers such as WSe_{2}/MoSe_{2} have received significant attention, there has been comparatively less research on heterotrilayers, which may offer new excitonic species and phases, as well as unique physical properties. In this Letter, we present theoretical and experimental investigations on the emission properties of quadrupolar excitons (QXs), a newly predicted type of exciton, in a WSe_{2}/MoSe_{2}/WSe_{2} heterotrilayer device. Our findings reveal that the optical brightness or darkness of QXs is determined by horizontal mirror symmetry and valley and spin selection rules. Additionally, the emission intensity and energy of both bright and dark QXs can be adjusted by applying an out-of-plane electric field, due to changes in hole distribution and the Stark effect. These results not only provide experimental evidence for the existence of QXs in heterotrilayers but also uncover their novel properties, which have the potential to drive the development of new exciton-based applications.

16.
Phys Rev Lett ; 130(15): 153802, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37115887

RESUMO

Solitons in microresonators have spurred intriguing nonlinear optical physics and photonic applications. Here, by combining Kerr and Brillouin nonlinearities in an over-modal microcavity, we demonstrate spatial multiplexing of soliton microcombs under a single external laser pumping operation. This demonstration offers an ideal scheme to realize highly coherent dual-comb sources in a compact, low-cost and energy-efficient manner, with uniquely low beating noise. Moreover, by selecting the dual-comb modes, the repetition rate difference of a dual-comb pair could be flexibly switched, ranging from 8.5 to 212 MHz. Beyond dual-comb, the high-density mode geometry allows the cascaded Brillouin lasers, driving the co-generation of up to 5 space-multiplexing frequency combs in distinct mode families. This Letter offers a novel physics paradigm for comb interferometry and provides a widely appropriate tool for versatile applications such as comb metrology, spectroscopy, and ranging.

17.
Nanotechnology ; 34(24)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36893457

RESUMO

Efficient manipulation of the emission direction of a chiral nanoscale light source is significant for information transmission and on-chip information processing. Here, we propose a scheme to control the directionality of nanoscale chiral light sources based on gap plasmons. The gap plasmon mode formed by a gold nanorod and a silver nanowire realizes the highly directional emission of chiral light sources. Based on the optical spin-locked light propagation, the hybrid structure enables the directional coupling of chiral emission to achieve a contrast ratio of 99.5%. The emission direction can be manipulated by tailoring the configuration of the structure, such as the positions, aspect ratios, and orientation of the nanorod. Besides, a great local field enhancement exists for highly enhanced emission rates within the nanogap. This chiral nanoscale light source manipulation scheme provides a way for chiral valleytronics and integrated photonics.

18.
Phys Chem Chem Phys ; 25(25): 16835-16843, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37313685

RESUMO

There exist resonance degeneracy and nesting in the spherical dielectric cavity embedded in an infinite zero-index-material (ZIM). However, its spontaneous emission (SE) has been scarcely studied. Here, we investigate the inhibition and enhancement of SE in spherical dielectric cavities surrounded by ZIMs at the nanoscale. In the cavities embedded in ε-near-zero materials, by adjusting the polarization of the emitter, the SE of the emitter can be controlled from inhibition to enhancement, ranging from 10-2 to dozens. For the cavities embedded in µ-near-zero or ε-µ-near-zero materials, the enhancement of SE is also achieved in a large range of cavities. These findings provide more application possibilities in single-photon sources, deformable optical devices with ZIMs, etc.

19.
J Phys Chem A ; 127(1): 329-338, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541035

RESUMO

Single-molecule localization microscopy (SMLM) has been widely used in biological imaging due to its ultrahigh spatial resolution. However, due to the strategy of reducing photodamage to living cells, the fluorescence signals of emitters are usually weak and the detector noises become non-negligible, which leads to localization misalignments and signal losses, thus deteriorating the imaging capability of SMLM. Here, we propose an active modulation method to control the fluorescence of the probe emitters. It actually marks the emitters with artificial blinking character, which directly distinguishes weak signals from multiple detector noises. We demonstrated from simulations and experiments that this method improves the signal-to-noise ratio by about 10 dB over the non-modulated method and boosts the sensitivity of single-molecule localization down to -4 dB, which significantly reduces localization misalignments and signal losses in SMLM. This signal-noise decoupling strategy is generally applicable to the super-resolution system with versatile labeled probes to improve their imaging capability. We also showed its application to the densely labeled sample, showing its flexibility in super-resolution nanoscopy.


Assuntos
Imagem Individual de Molécula , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos
20.
Nano Lett ; 22(21): 8728-8734, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314894

RESUMO

The artificial engineering of photoresponse is crucial for optoelectronic applications, especially for photodetectors. Here, we designed and fabricated a metasurface on a semimetallic Cd3As2 nanoplate to improve its thermoelectric photoresponse. The metasurface can enhance light absorption, resulting in a temperature gradient. This temperature gradient can contribute to thermoelectric photoresponse through the photothermoelectric effect. Furthermore, power-dependent measurements showed a linearly dependent photoresponse of the Cd3As2 metasurface device, indicating a second-order photocurrent response. Wavelength-dependent measurements showed that the metasurface can efficiently separate photoexcited carriers in the broadband range of 488 nm to 4 µm. The photoresponse near the metasurface boundaries exhibits a responsivity of ∼1 mA/W, which is higher than that near the electrode junctions. Moreover, the designed metasurface device provided an anisotropic polarization-dependent photoresponse rather than the isotropic photoresponse of the original Cd3As2 device. This study demonstrates that metasurfaces have excellent potential for artificial controllable photothermoelectric photoresponse of various semimetallic materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa