Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Chem Soc Rev ; 53(3): 1090-1166, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38193263

RESUMO

Smart materials based on stimuli-fluorochromic π-conjugated solids (SFCSs) have aroused significant interest due to their versatile and exciting properties, leading to advanced applications. In this review, we highlight the recent developments in SFCS-based smart materials, expanding beyond organometallic compounds and light-responsive organic luminescent materials, with a discussion on the design strategies, exciting properties and stimuli-fluorochromic mechanisms along with their potential applications in the exciting fields of encryption, sensors, data storage, display, green printing, etc. The review comprehensively covers single-component and multi-component SFCSs as well as their stimuli-fluorochromic behaviors under external stimuli. We also provide insights into current achievements, limitations, and major challenges as well as future opportunities, aiming to inspire further investigation in this field in the near future. We expect this review to inspire more innovative research on SFCSs and their advanced applications so as to promote further development of smart materials and devices.

2.
Small ; 20(29): e2400220, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366315

RESUMO

The controllable self-assembly of conjugated homopolymers, especially homopolymers without other segments (a prerequisite for phase separation), which can afford chances to achieve tunable optical/electronic properties, remains a great challenge due to their poor solubility and has remained rarely documented. Herein, a conjugated homopolymer (DPPP-COOH) is synthesized, which has a unique brush-like structure with a conjugated dendritic poly-para-phenylene (DPPP) backbone and alkyl-carboxyl side chains at both edges of the backbone. The introduction of carboxyl makes the brush-like homopolymer exhibit pH-modulated 1D hierarchical self-assembly behavior in dilute solution, and allows for flexible morphological regulation of the assemblies, forming some uncommon superstructures including ultralong nanowires (at pH 7), superhelices (at pH 10) and "single-wall" nanotubes (at pH 13), respectively. Furthermore, the good aqueous dispersibility and 1D feature endow the superstructures formed in a high-concentration neutral solution with high broad-spectrum antibacterial performance superior to that of many conventional 1D materials.

3.
Langmuir ; 40(24): 12792-12801, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848468

RESUMO

Herein, we constructed the branch-shaped SiO2/nano GO (nGO)/Fe3O4/selenium quantum dots (QDs) (SeQDs) nanoparticles (SGF/SeQDs) embodying magnetism, fluorescence, and microwave stimulus response properties to enhance the performance of releasing drugs. The SGF/SeQDs composite was characterized by technologies including powder X-ray diffraction, transmission electron microscopy, infrared spectroscopy, etc. In the nanoparticles, the branch-shaped SiO2 provides a large specific surface area, nGO as the dielectric loss-style material promotes microwave-absorbing performance, and the Fe3O4 serves as a magnetic targeting agent and microwave absorber. Integrating nGO and Fe3O4 could further strengthen the microwave absorption of the entire composite; selenium features both fluorescence and anticancer effects. The synthesized nanoparticles as carriers exhibited a branch-like mesoporous sphere of ∼260 nm, a specific surface area of 258.57 m2 g-1, a saturation magnetization of 24.59 emu g-1, and good microwave thermal conversion performance that the temperature was elevated from 25 to 70 °C under microwave irradiation. These physical characteristics, including large pore volume (5.30 nm), high specific surface area, and fibrous morphology, are in favor of loading drugs. Meanwhile, the cumulative etoposide (VP16) loading rate of the nanoparticles reached to 21 wt % after 360 min. The noncovalent interaction between the VP16 and SGF/SeQDs was mainly the hydrogen-bonding effect during the loading process. Furthermore, the drug release rates at 180 min were up to 81.46, 61.92, and 56.84 wt % at pH 4, 5, and 7, respectively. At 25, 37, and 50 °C, the rates of drug release reach 25.40, 56.84, and 65.32 wt %, respectively. After microwave stimulation at pH 7, the rate of releasing drug increased distinctly from 56.84 to 71.74 wt % compared to that of nonmicrowave irradiation. Cytotoxicity tests manifested that the carrier had good biocompatibility. Therefore, the nanoparticles are looking forward to paving one platform for further applications in biomedicine and drug delivery systems.


Assuntos
Portadores de Fármacos , Pontos Quânticos , Selênio , Dióxido de Silício , Dióxido de Silício/química , Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Humanos , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Selênio/química , Micro-Ondas , Liberação Controlada de Fármacos , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Etoposídeo/química , Etoposídeo/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Tamanho da Partícula , Propriedades de Superfície , Óxido Ferroso-Férrico/química
4.
Biomacromolecules ; 23(6): 2562-2571, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561014

RESUMO

Insect cuticle is a fiber-reinforced composite material that consists of polysaccharide chitin fibers and a protein matrix. The molecular interactions between insect cuticle proteins and chitin that govern the assembly and evolution of cuticles are still not well understood. Herein, we report that Ostrinia furnacalis cuticular protein hypothetical-1 (OfCPH-1), a newly discovered and most abundant cuticular protein from Asian corn borer O. furnacalis, can form coacervates in the presence of chitosan. The OfCPH-1-chitosan coacervate microdroplets are initially liquid-like but become gel-like with increasing time or salt concentration. The liquid-to-gel transition is driven by hydrogen-bonding interactions, during which an induced ß-sheet structure of OfCPH-1 is observed. Given the abundance of OfCPH-1 in the cuticle of O. furnacalis, this liquid-liquid phase separation process and its aging behavior could play critical roles in the formation of the cuticle.


Assuntos
Quitosana , Mariposas , Animais , Quitina/química , Proteínas de Insetos/química , Insetos , Mariposas/metabolismo
5.
Angew Chem Int Ed Engl ; 57(13): 3366-3371, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29397013

RESUMO

Structurally well-defined graphene nanoribbons (GNRs) have attracted great interest because of their unique optical, electronic, and magnetic properties. However, strong π-π interactions within GNRs result in poor liquid-phase dispersibility, which impedes further investigation of these materials in numerous research areas, including supramolecular self-assembly. Structurally defined GNRs were synthesized by a bottom-up strategy, involving grafting of hydrophilic poly(ethylene oxide) (PEO) chains of different lengths (GNR-PEO). PEO grafting of 42-51 % percent produces GNR-PEO materials with excellent dispersibility in water with high GNR concentrations of up to 0.5 mg mL-1 . The "rod-coil" brush-like architecture of GNR-PEO resulted in 1D hierarchical self-assembly behavior in the aqueous phase, leading to the formation of ultralong nanobelts, or spring-like helices, with tunable mean diameters and pitches. In aqueous dispersions the superstructures absorbed in the near-infrared range, which enabled highly efficient conversion of photon energy into thermal energy.

6.
Anal Chem ; 88(16): 8309-14, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27444320

RESUMO

Dipeptide peptidase IV (DPPIV) and fibroblast activation protein (FAP) are isoenzymes. Evidence shows that DPPIV is related to antitumor immunity, and FAP may be a drug target in cancer therapy, making it seem that the two enzymes might have a synergistic role during the proliferation of cancer cells. Surprisingly, herein, we find an adverse action of DPPIV and FAP in the proliferation process by analyzing their changes with two tailor-made ultrasensitive fluorescent probes. First, the up-regulation of DPPIV and down-regulation of FAP in cancer cells under the stimulation of genistein are detected. Then, we find that MGC803 cells with a higher FAP but lower DPPIV level than SGC7901 cells exhibit a faster proliferation rate. Importantly, inhibiting the DPPIV expression with siRNA increases the proliferation rate of MGC803 cells, whereas the FAP inhibition decreases the rate. These findings suggest that the two enzymes play an adverse role during the proliferation of cancer cells, which provides us a new viewpoint for cancer studies.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Corantes Fluorescentes/química , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Confocal , Serina Endopeptidases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/genética , Regulação para Baixo/efeitos dos fármacos , Endopeptidases , Gelatinases/antagonistas & inibidores , Genisteína/farmacologia , Humanos , Proteínas de Membrana/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espectrometria de Fluorescência , Regulação para Cima/efeitos dos fármacos
7.
Anal Chem ; 88(8): 4557-64, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27021123

RESUMO

Tyrosinase is regarded as an important biomarker of melanoma cancer, and its metabolism is closely related to some severe skin diseases such as vitiligo. Since tyrosinase is mainly located in the melanosomes of melanocytes, a probe that can specifically detect and image tysosinase in melanosomes would be in urgent demand to study the behavior of the enzyme in cells, but unfortunately, no melanosome-targeting tyrosinase fluorescent probe has been reported so far to the best of our knowledge. In this work, we have developed such a new probe, Mela-TYR, which bears morpholine as a melanosome-targeting group and 4-aminophenol as a tyrosinase reaction group. The probe exhibits not only a highly sensitive and selective off-on response to tyrosinase via oxidization cleavage, but also an accurate targeting ability toward the acidic organelles of melanosomes and lyososomes, which is validated by colocalization experiments with mCherry-tagged melanosomes as well as DND-99 (a commercial dye). The probe has been used to image the relative contents of tyrosinase in different cells. Notably, because of the tyrosinase deficiency in normal lysosomes, the probe only fluoresces in melanosomes in principle although it can accumulate in other acidic organelles like lysosomes. By virtue of this property, the misdistribution of tyrosinase from melanosomes to lysosomes in murine melanoma B16 cells under the stimulation of inulavosin is imaged in real time for the first time. Moreover, the upregulation of melanosomal tyrosinase in live B16 cells under the stimulation of psoralen/ultraviolet A is detected with our probe, and this upregulation is further verified by standard colorimetric assay. The probe provides a simple, visual method to study the metabolism of tyrosinase in cells and shows great potential in clinical diagnosis and treatments of tyrosinase-associated diseases.


Assuntos
Ficusina/metabolismo , Corantes Fluorescentes/química , Lisossomos/enzimologia , Melanossomas/enzimologia , Monofenol Mono-Oxigenase/análise , Regulação para Cima , Aminofenóis/química , Corantes Fluorescentes/síntese química , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Morfolinas/química
8.
Anal Chem ; 88(2): 1440-6, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26652905

RESUMO

Monoamine oxidase A (MAO-A) is known to widely exist in most cell lines in the body, and its dysfunction (unusually high or low levels of MAO-A) is thought to be responsible for several psychiatric and neurological disorders. Thus, a sensitive and selective method for evaluating the relative MAO-A levels in different live cells is urgently needed to better understand the function of MAO-A, but to our knowledge such a method is still lacking. Herein, we rationally design two new ratiometric fluorescence probes (1 and 2) that can sensitively and selectively detect MAO-A. The probes are constructed by incorporating a recognition group of propylamine into the fluorescent skeleton of 1,8-naphthalimide, and the detection mechanism is based on amine oxidation and ß-elimination to release the fluorophore (4-hydroxy-N-butyl-1,8-naphthalimide), which is verified by HPLC analysis. Reaction of the probes with MAO-A produces a remarkable fluorescence change from blue to green, and the ratio of fluorescence intensity at 550 and 454 nm is directly proportional to the concentration of MAO-A in the ranges of 0.5-1.5 and 0.5-2.5 µg/mL with detection limits of 1.1 and 10 ng/mL (k = 3) for probes 1 and 2, respectively. Surprisingly, these probes show strong fluorescence responses to MAO-A but almost none to MAO-B (one of two isoforms of MAO), indicating superior ability to distinguish MAO-A from MAO-B. The high specificity of the probes for MAO-A over MAO-B is further supported by different inhibitor experiments. Moreover, probe 1 displays higher sensitivity than probe 2 and is thus investigated to image the relative MAO-A levels in different live cells, such as HeLa and NIH-3T3 cells. It is found that the concentration of endogenous MAO-A in HeLa cells is approximately 1.8 times higher than that in NIH-3T3 cells, which is validated by the result from an ELISA kit. Additionally, the proposed probes may find more uses in the specific detection of MAO-A between the two isoforms of MAO, thereby promoting our understanding of the behavior and function of MAO-A in living biosystems.


Assuntos
Corantes Fluorescentes/análise , Espaço Intracelular/enzimologia , Monoaminoxidase/análise , Animais , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Monoaminoxidase/metabolismo , Células NIH 3T3
9.
Angew Chem Int Ed Engl ; 55(47): 14728-14732, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27775216

RESUMO

Fluorescence imaging of tyrosinase (a cancer biomarker) in living organisms is of great importance for biological studies. However, selective detection of tyrosinase remains a great challenge because current fluorescent probes that contain the 4-hydroxyphenyl moiety show similar fluorescence responses to both tyrosinase and some reactive oxygen species (ROS), thereby suffering from ROS interference. Herein, a new tyrosinase-recognition 3-hydroxybenzyloxy moiety, which exhibits distinct fluorescence responses for tyrosinase and ROS, is proposed. Using the recognition moiety, we develop a near-infrared fluorescence probe for tyrosinase activity, which effectively eliminates the interference from ROS. The high specificity of the probe was demonstrated by imaging and detecting endogenous tyrosinase activity in live cells and zebrafish and further validated by an enzyme-linked immunosorbent assay. The probe is expected to be useful for the accurate detection of tyrosinase in complex biosystems.


Assuntos
Corantes Fluorescentes/química , Monofenol Mono-Oxigenase/análise , Imagem Óptica , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Raios Infravermelhos , Camundongos , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
10.
Anal Chem ; 87(16): 8353-9, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26176215

RESUMO

A new sensitive fluorescent probe with long analytical wavelengths for γ-glutamyl transpeptidase (GGT) assay has been developed by incorporating the γ-glutamyl group as a recognition unit into the fluorophore of cresyl violet (CV). The detection mechanism is based on the GGT-catalyzed cleavage of the γ-glutamyl group, followed by the release of CV, which leads to a distinct color change from light yellow to pink and a large fluorescence enhancement at 615 nm (λex = 585 nm). Under the optimized conditions, the fluorescence intensity of the probe is directly proportional to the activity of GGT in the range of 1-50 U/L with a detection limit of 5.6 mU/L. By virtue of its high sensitivity and long analytical wavelengths, the probe has been used to directly determine GGT in human serum samples from both healthy people and liver cancer patients, and the obtained results accord well with those acquired by commercial GGT fluorometric assay kit. The probe has also been employed to image endogenous GGT in living cells. Notably, with our probe the expression level of GGT in HepG2 cells under the action of sodium butyrate (an anticancer drug) was studied by fluorescence confocal microscopy, revealing that sodium butyrate can induce the upregulation of GGT in HepG2 cells in a dose- and time-dependent manner. This behavior of sodium butyrate has further been confirmed by lysate assay and inhibitor experiment. The proposed probe is rather simple and may find a wide use in the determination of GGT in clinical and biological samples.


Assuntos
Ensaios Enzimáticos/métodos , Corantes Fluorescentes/química , gama-Glutamiltransferase/análise , Células Hep G2 , Humanos , Limite de Detecção , Estrutura Molecular , gama-Glutamiltransferase/sangue
11.
Heliyon ; 10(1): e23502, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38223725

RESUMO

Disulfidptosis, a newly revealed form of cell death, regulated by numerous genes that has been recently identified. The exact role of disulfidptosis in lung adenocarcinoma (LUAD) still uncertain. Objective of this study was to explore potential prognostic markers among disulfidptosis genes in LUAD. By combining transcriptomic information from Gene Expression Omnibus databases and The Cancer Genome Atlas, we identified differentially expressed and prognostic disulfidptosis genes. By conducting least absolute shrinkage and selection operator with multivariate Cox regression, four disulfidptosis genes were selected to create the prognostic signature. The implementation of the signature separated the training and validation cohorts into groups with high- and low-risk. Subsequently, the model was verified by conducting an independent analysis of receiver operating characteristic (ROC) curves. Further comparisons were made between the two risk-divided groups with regards the tumor microenvironment, immune cell infiltration, immunotherapy response, and drug sensitivity. The signature was constructed using four disulfidptosis-related genes: SLC7A11, SLC3A2, NCKAP1, and GYS1. According to ROC curves, the signature was effective for predicting LUAD prognosis. In addition, the prognostic signature correlated with sensitivity to chemotherapeutic agents and the efficacy of immunotherapy in LUAD. Finally, through external validation, we showed that NCKAP1 are correlated with tumor migration, proliferation, and invasion of LUAD cells. GYS1 affects immune cell, especially M2 macrophage infiltration in the tumor microenvironment. The disulfidptosis four-gene model can reliably predict the prognosis of patients diagnosed with LUAD, thereby providing valuable information for clinical applications and immunotherapy.

12.
Eur J Med Chem ; 248: 115069, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610249

RESUMO

Mitochondria has been identified as a target for tumor therapy. Agents preferentially concentrated in mitochondria may exert more potent antitumor effects by interfering with the normal function of mitochondria. Glutathione reductase (GR) in mitochondria is a crucial antioxidant enzyme to maintain mitochondrial function, and has been recognized as an important target for the development of anticancer drugs. Herein, we present a triphenylphosphonium-modified anticancer agent, MT-1, which can preferentially accumulate in mitochondria and bind to GR by covalent binding manner. As a result, morphology and function of mitochondria were severely damaged, as well as cellular energy supply was severely impeded due to the simultaneously inhibition against mitochondrial respiration and glycolysis. Moreover, MT-1 was found to bind to a completely new site of GR (C278) that has never considered as binding site of inhibitors before. This new binding mode led to the change of GR structure, which affected the stability of the transition state of the catalytic process, and finally led to the inhibition of GR activity. Thus, current study provided a potentially novel tumor therapeutic strategy by targeting novel sites of GR in mitochondrion.


Assuntos
Antineoplásicos , Glutationa Redutase/metabolismo , Antineoplásicos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Glutationa/metabolismo , Mitocôndrias/metabolismo , Antioxidantes/metabolismo
13.
Curr Pharm Des ; 29(27): 2161-2176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694785

RESUMO

BACKGROUND: In recent years, pulmonary fibrosis (PF) has increased in incidence and prevalence. Qingzaojiufei decoction (QD) is a herbal formula that is used for the treatment of PF. OBJECTIVE: In this research, network pharmacology and molecular docking methods were used to explore the major chemical components and potential mechanisms of QD in the treatment of PF. METHODS: The principal components and corresponding protein targets of QD were used to screen on Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID) and high-throughput experiment-and reference-guided database (HERB), Cytoscape 3.7.2 was used to construct the drug-component-target network. PF targets were collected by GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. The protein-protein interaction (PPI) network was constructed by importing compound-disease intersection targets into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and visualized by Cytoscape3.7.2. We further performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the intersecting targets. In the last, we validated the core targets and active compounds by molecular docking. RESULTS: The key compounds of quercetin, (-)-epigallocatechin-3-gallate, and kaempferol of QD were obtained. The key targets of AKT1, TNF, and IL6 of QD were obtained. The molecular docking results show that quercetin, (-)-epigallocatechin-3-gallate and kaempferol work well with AKT1, TNF and IL6. CONCLUSION: This research shows the multiple active components and molecular mechanism of QD in the treatment of PF and offers resources and suggestions for future studies.

14.
Nat Commun ; 14(1): 1684, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973282

RESUMO

Longitudinal bulk and single-cell omics data is increasingly generated for biological and clinical research but is challenging to analyze due to its many intrinsic types of variations. We present PALMO ( https://github.com/aifimmunology/PALMO ), a platform that contains five analytical modules to examine longitudinal bulk and single-cell multi-omics data from multiple perspectives, including decomposition of sources of variations within the data, collection of stable or variable features across timepoints and participants, identification of up- or down-regulated markers across timepoints of individual participants, and investigation on samples of same participants for possible outlier events. We have tested PALMO performance on a complex longitudinal multi-omics dataset of five data modalities on the same samples and six external datasets of diverse background. Both PALMO and our longitudinal multi-omics dataset can be valuable resources to the scientific community.


Assuntos
Multiômica , Humanos , Software
15.
ACS Nano ; 17(23): 23679-23691, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37983051

RESUMO

Developing self-assembled biomedical materials based on insect proteins is highly desirable due to their advantages of green, rich, and sustainable characters as well as excellent biocompatibility, which has been rarely explored. Herein, salt-induced controllable self-assembly, antibacterial performance, and infectious wound healing performance of an insect cuticle protein (OfCPH-2) originating from the Ostrinia furnacalis larva head capsule are investigated. Interestingly, the addition of salts could trigger the formation of beaded nanofibrils with uniform diameter, whose length highly depends on the salt concentration. Surprisingly, the OfCPH-2 nanofibrils not only could form functional films with broad-spectrum antibacterial abilities but also could promote infectious wound healing. More importantly, a possible wound healing mechanism was proposed, and it is the strong abilities of OfCPH-2 nanofibrils in promoting vascular formation and antibacterial activity that facilitate the process of infectious wound healing. Our exciting findings put forward instructive thoughts for developing innovative bioinspired materials based on insect proteins for wound healing and related biomedical fields.


Assuntos
Cicatrização , Infecção dos Ferimentos , Animais , Materiais Biocompatíveis , Antibacterianos/farmacologia , Proteínas de Insetos/farmacologia , Insetos , Hidrogéis
16.
ACS Appl Bio Mater ; 3(3): 1607-1615, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021651

RESUMO

Developing one agent that has reasonable stability and ultrahigh photothermal conversion efficiency (PTCE) for near-infrared (NIR) photothermal cancer treatment remains a great challenge, but is highly desirable. In this research, we developed a perylene diimide (PDI)-based oligomer (OPDI) through coupling monomeric PDI derivatives together. OPDI exhibited slightly red-shifted absorption at NIR region compared with monomeric PDI. More importantly, the self-assembled OPDI nanoparticles not only exhibited high stability and preferable biocompatibility, but also possessed an ultrahigh PTCE (up to 79.8%, higher than many other photothermal agents reported before). This OPDI photothermal agent has been demonstrated to exhibit excellent therapeutic effects. Our research provides a guide for the exploitation of photothermal agents with ultrahigh PTCE.

17.
Nanoscale ; 12(48): 24311-24330, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33300527

RESUMO

At present, cancer is obviously a major threat to human health worldwide. Accurate diagnosis and treatment are in great demand and have become an effective method to alleviate the development of cancer and improve the survival rate of patients. A large number of theranostic probes that combine diagnosis and treatment methods have been developed as promising tools for tumor precision medicine. Among them, fluorescent theranostic probes have developed rapidly in the frontier research field of precision medicine with their real time, low toxicity, and high-resolution merit. Therefore, this review focuses on recent advances in the development of fluorescent theranostic probes, as well as their applications for cancer diagnosis and treatment. Initially, small-molecule fluorescent theranostic probes mainly including tumor microenvironment-responsive fluorescent prodrugs and phototherapeutic probes were introduced. Subsequently, nanocomposite probes are expounded based on four types of nano-fluorescent particles combining different therapies (chemotherapy, photothermal therapy, photodynamic therapy, gene therapy, etc.). Then, the capsule-type "all in one" probes, which occupy an important position in theranostic probes, are summarized according to the surface carrier type. This review aims to present a comprehensive guide for researchers in the field of tumor-related theranostic probe design and development.


Assuntos
Neoplasias , Medicina de Precisão , Corantes Fluorescentes , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Nanomedicina Teranóstica , Microambiente Tumoral
18.
Nanoscale ; 12(27): 14870-14881, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32638794

RESUMO

Hypoxia is one of the most common and important features occurring across a wide variety of malignancies, which can have adverse effects on the therapeutic outcomes of chemotherapy and radiotherapy. Therefore, the characterization of tumor hypoxia is of great importance in clinical tumor treatment. Herein, we firstly develop a new spectroscopic off-on probe with high sensitivity (detection limit: 5.8 ng mL-1) and good selectivity for fluorescence imaging the hypoxic status of tumor cells via its enzymatic reaction with nitroreductase in vitro and in vivo in the presence of dimethyl sulfoxide (DMSO) as a co-solvent. Inspired by the recent investigations on metal-organic frameworks (MOFs), a dual pH and ATP-responsive ZIF-90 nanoplatform was synthesized, and then PEG was post-modified through a Schiff base reaction. This allows the platform to serve as a carrier to load the hypoxia-responsive probe to investigate its response to enzyme in cells and in mice without using dimethyl sulfoxide as a co-solvent. Consequently, the two probes we synthesized here can successfully respond to nitroreductase for turn-on fluorescence imaging at a cellular level and in tumor-bearing mice. This is the first time that an enzyme-responsive organic small-molecule probe has been mounted on one of the MOFs. Our results open up a promising way for the design and application of both enzyme-responsive probes and MOFs.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Animais , Diagnóstico por Imagem , Hipóxia , Camundongos , Neoplasias/diagnóstico por imagem
19.
ACS Nano ; 14(11): 15962-15972, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33112602

RESUMO

Developing an effective and green method toward organic functional cocrystals based on the solubility-mismatched coformers is highly desirable and very important. Herein, we applied a green two-step liquid-assisted-grinding coassembly (LAGC) in fabricating tetracene-octafluoronaphthalene (TC-OFN) cocrystals from solubility-mismatched pairs of tetracene (TC, poorly soluble, 0.2 mg mL-1) and octafluoronaphthalene (OFN, highly soluble, 0.2 × 104 mg mL-1). Such cocrystals are extremely difficult to prepare through the common solution-processing strategies. More importantly, this two-step LAGC process could allow us to efficiently prepare TC-OFN cocrystals in gram scale. The as-prepared cocrystals displayed the intrinsic green emission of TC with much higher photoluminescence quantum yield (13.75%) comparing with the pure solid TC with the almost-quenched emission (0.41%, aggregation-caused quenching (ACQ)). The ultrafast spectra study on these cocrystals verifies the successful barrier function of OFN molecules in interrupting the well-known singlet fission (SF) in TC solids. Furthermore, this method can allow us to easily fabricate fluorescent TC-OFN water inks, which can be employed to prepare luminescent paintings or highly emissive ultratransparent/flexible films.

20.
Nanoscale ; 12(5): 3058-3067, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31971199

RESUMO

A material with diverse self-assembled morphologies is extremely important and highly desirable because such samples can provide tunable optical and electronic properties, which are critical in applications such as organic photovoltaics, microelectronics and bio-imaging. Moreover, the synthesis and controllable self-assembly of H-shaped bichromophoric perylenediimides (PDIs) are needed to advance these materials in organic photovoltaics, microelectronics and bio-imaging; however, this has remained a great challenge thus far. Here, we successfully synthesize a novel H-shaped bichromophoric PDI Gemini through the palladium-catalyzed coupling reaction. The as-prepared PDI Gemini exhibited unprecedented tunable self-assembly behavior in solution, yielding diverse low-dimensional superstructures, such as one-dimensional (1D) helices, two-dimensional (2D) rectangular nanocrystals, pyramid-shaped parallelograms, ultralarge micro-sheets, and uniform nanospheres, under different self-assembly conditions. Of particular interest, the 2D hierarchical superstructures along with their formation mechanisms represent the first finding in the self-assembly of PDI-based molecules. This study opens a new avenue for tunable self-assembly of conjugated molecules and affords opportunities for the fabrication of novel self-assembled optical and electronic materials based on PDI molecules.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa