Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 231: 10-18, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30395976

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Sparassis crispa, also known as cauliflower mushroom, has been used historically in traditional Asian medicine. It possesses various biological activities, such as immunopotentiation, anti-diabetes, anti-cancer, and anti-inflammatory effects. Recently, we isolated the non-aqueous fraction from methanol extract of S. crispa (SCF4) by using water-organic solvent mixtures and high-performance liquid chromatography (HPLC). In the present study, we identified the anti-inflammatory activity and action mechanism of SCF4 in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophage cells. MATERIALS AND METHODS: The chloroform layer isolated from S. crispa methanol extract was separated into seven fractions using preparative HPLC. The fractions were then applied to NO assay to identify the fraction with the best anti-inflammatory activity. The inflammation inhibitory effect and underlying mechanism of SCF4 in LPS-stimulated RAW264.7 cells were assessed using WST-1 assay, enzyme-linked immunosorbent assay (ELISA), ROS assay, and Western blot analysis. RESULTS: SCF4 significantly suppressed LPS-induced production of pro-inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)- 6, and IL-1ß, without cytotoxicity. In addition, SCF4 downregulated not only the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), but also the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) stimulated by LPS. SCF4 also blocked the nuclear translocation of NF-κB via reduction of inhibitor of κB alpha (IκBα) degradation. Furthermore, SCF4 inhibited the phosphorylation of transforming growth factor beta-activated kinase 1 (TAK1), an important upstream factor of NF-κB and MAPK signaling mediated through toll-like receptor (TLR). CONCLUSIONS: These findings demonstrate for the first time the correlation between the anti-inflammatory activity of SCF4 and TLR-mediated NF-κB and MAPK signaling pathways in LPS-stimulated RAW264.7 macrophage cells, suggesting that the non-aqueous extract of S. crispa could be applied as a promising natural product for the prevention and treatment of inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Misturas Complexas/farmacologia , Polyporales , Animais , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo
2.
J Microbiol Biotechnol ; 28(2): 347, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29510475

RESUMO

This erratum is being published to correct the author's contribution and name of above manuscript by Gurung et al. that was published in Journal of Microbiology and Biotechnology (2017, 27: 1639-1648). The first author (Rit Bahadur Gurung) and the second author (So Youn Gong) contributed equally to this article. And the seventh author (Tae Jin Oh) should appear as 'Tae-Jin Oh'.

3.
J Microbiol Biotechnol ; 27(9): 1639-1648, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28633516

RESUMO

Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, antiinflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP- α-D-glucose or UDP-α-D-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'-O-ß- glucoside, curcumin 4',4''-di-O-ß-glucoside, curcumin 4'-O-ß-2-deoxyglucoside, and curcumin 4',4''-di-O-ß-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'-O-ß-glucoside and curcumin 4'-O-ß-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.


Assuntos
Antineoplásicos/química , Curcumina/química , Glicosídeos/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Glicosídeos/farmacologia , Glicosilação , Humanos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa