Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(28): e2311153, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308409

RESUMO

Here, a high peak ZT of ≈2.0 is reported in solution-processed polycrystalline Ge and Cd codoped SnSe. Microstructural characterization reveals that CdSe quantum dots are successfully introduced by solution process method. Ultraviolet photoelectron spectroscopy evinces that CdSe quantum dots enhance the density of states in the electronic structure of SnSe, which leads to a large Seebeck coefficient. It is found that Ge and Cd codoping simultaneously optimizes carrier concentration and improves electrical conductivity. The enhanced Seebeck coefficient and optimization of carrier concentration lead to marked increase in power factor. CdSe quantum dots combined with strong lattice strain give rise to strong phonon scattering, leading to an ultralow lattice thermal conductivity. Consequently, high thermoelectric performance is realized in solution-processed polycrystalline SnSe by designing quantum dot structures and introducing lattice strain. This work provides a new route for designing prospective thermoelectric materials by microstructural manipulation in solution chemistry.

2.
Small ; 19(6): e2206058, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36408819

RESUMO

Here, a new route is proposed for the minimization of lattice thermal conductivity in MnTe through considerable increasing phonon scattering by introducing dense lattice distortions. Dense lattice distortions can be induced by Cu and Ag dopants possessing large differences in atom radius with host elements, which causes strong phonon scattering and results in extremely low lattice thermal conductivity. Density functional theory (DFT) calculations reveal that Cu and Ag codoping enables multiple valence band convergence and produces a high density of state values in the electronic structure of MnTe, contributing to the large Seebeck coefficient. Cu and Ag codoping not only optimizes the Seebeck coefficient but also substantially increases the carrier concentration and electrical conductivity, resulting in the significant enhancement of power factor. The maximum power factor reaches 11.36 µW cm-1 K-2 in Mn0.98 Cu0.04 Ag0.04 Te. Consequently, an outstanding ZT of 1.3 is achieved for Mn0.98 Cu0.04 Ag0.04 Te by these synergistic effects. This study provides guidelines for developing high-performance thermoelectric materials through the rational design of effective dopants.

3.
Small ; 19(28): e2301298, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36974580

RESUMO

SnTe, emerging as an environment-friendly alternative to conventional PbTe thermoelectrics, has drawn significant attention for clean energy conversion. Here, a high peak figure of merit (ZT) of 1.45 at 873 K in Ge/Bi codoped SnTe-AgBiTe2 alloys is reported. It is demonstrated that the existence of Ge, Bi, and Ag facilitate band convergence in SnTe, resulting in remarkable enhancement of Seebeck coefficient and power factor. Simultaneously, localized lattice imperfections including dislocations, point defects, and micro/nanopore structures are caused by incorporation of Ge, Bi, and Ag, which can effectively scatter heat carrying phonons with different wavelengths and contribute to an extremely low κL of 0.61 W m-1  K-1 in Sn0.92 Ge0.04 Bi0.04 Te-10%AgBiTe2 . Such high peak ZT is achieved by decouples electron and phonon transport through band modification and localized lattice engineering, highlighting promising solutions for advancing thermoelectrics.

4.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012141

RESUMO

Reversible protein phosphorylation mediated by protein kinases and phosphatases plays important roles in the regulation of leaf senescence. We previously reported that the senescence-associated leucine-rich repeat receptor-like kinase AtSARK autophosphorylates on both serine/threonine and tyrosine residues and functions as a positive regulator of Arabidopsis leaf senescence; the senescence-suppressed protein phosphatase SSPP interacts with and dephosphorylates the cytoplasmic domain of AtSARK, thereby negatively regulating leaf senescence. Here, 27 autophosphorylation residues of AtSARK were revealed by mass spectrometry analysis, and six of them, including two Ser, two Thr, and two Tyr residues, were further found to be important for the biological functions of AtSARK. All site-directed mutations of these six residues that resulted in decreased autophosphorylation level of AtSARK could significantly inhibit AtSARK-induced leaf senescence. In addition, mutations mimicking the dephosphorylation form of Ser384 (S384A) or the phosphorylation form of Tyr413 (Y413E) substantially reduced the interaction between AtSARK and SSPP. All results suggest that autophosphorylation of AtSARK is essential for its functions in promoting leaf senescence. The possible roles of S384 and Y413 residues in fine-tuning the interaction between AtSARK and SSPP are discussed herein.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases , Transdução de Sinais/fisiologia , Treonina/metabolismo
5.
Angew Chem Int Ed Engl ; 59(49): 22034-22038, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32896078

RESUMO

Systematic design and self-assembly of metal-organic polyhedra with predictable configurations has been a long-standing challenge in crystal engineering. Herein a concave polyoxovanadate cluster, [V6 O6 (OCH3 )9 (SO4 )4 ]5- , which can be generated in situ under specific reaction conditions, is reported. Based on this cluster, a potential trivalent molecular building block, [V6 O6 (OCH3 )9 (SO4 )(CO2 )3 ]2- , can be obtained by the bridging-ligand-substitution strategy and it possesses appropriate angle information for the design of molecular cubes. Utilizing the face-directed assembly of the trivalent molecular building block and a diverse set of tetratopic carboxylate linkers, a series of metal-organic cubes (VMOC-1-VMOC-5) with the same topology but different functionalities and dimensions were designed and constructed. An inclusion study using VMOC-3 shows that they are potential molecular receptors for selective capture of size-matching polycyclic aromatic hydrocarbon guest molecules.

6.
Angew Chem Int Ed Engl ; 58(3): 780-784, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30475444

RESUMO

A rational synthetic strategy to construct two supramolecular isomers based on polyoxovanadate organic polyhedra with tetrahedral symmetries is presented. VMOP-α, a low-temperature product, has an extremely large cell volume (470 842 Å3 ), which is one of the top three for well-defined MOPs. The corner-to-corner packing of tetrahedra leads to a quite low density of 0.174 g cm-3 with 1D channels (ca. 5.4 nm). The effective pore volume is up to 93.6 % of cell volume, nearly the largest found in MOPs. For the high-temperature outcome, VMOP-ß, the cell volume is only 15 513 Å3 . The packing mode of tetrahedra is corner-to-face, giving rise to a high-density architecture (1.324 g cm-3 ; channel 0.8 nm). Supramolecular structural transformation between VMOP-α and VMOP-ß can be reversibly achieved by temperature-induced solvent-mediated transformation. These findings give a good opportunity for understanding 3D supramolecular aggregation and crystal growth based on large molecular tectonics.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38593180

RESUMO

Here, we combined Cd and In codoping with a simple hydrothermal synthesis method to prepare SnSe powders composed of nanorod-like flowers. After spark plasma sintering, its internal grains inherited well the morphological features of the precursor, and the multiscale microstructure included nanorod-shaped grains, high-density dislocations, and stacking faults, as well as abundant nanoprecipitates, resulting in an ultralow thermal conductivity of 0.15 W m-1 K-1 for the synthesized material. At the same time, Cd and In synergistically regulated the electrical conductivity and Seebeck coefficient of SnSe, leading to an enhanced power factor. Among them, Sn0.94Cd0.03In0.03Se achieved a peak ZT of 1.50 parallel to the pressing direction, representing an 87.5% improvement compared with pure SnSe. Notably, the material possesses isotropic ZT values parallel and perpendicular to the pressing direction, overcoming the characteristic anisotropy in thermal performance observed in previous polycrystalline SnSe-based materials. Our results provide a new strategy for optimizing the performance of thermoelectric materials through structural engineering.

8.
Nat Commun ; 15(1): 9133, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443492

RESUMO

Engineering the electronic band structures upon doping is crucial to improve the thermoelectric performance of materials. Understanding how dopants influence the electronic states near the Fermi level is thus a prerequisite to precisely tune band structures. Here, we demonstrate that the Sn-s states in SnTe contribute to the density of states at the top of the valence band. This is a consequence of the half-filled p-p σ-bond (metavalent bonding) and its resulting symmetry of the orbital phases at the valence band maximum (L point of the Brillouin zone). This insight provides a recipe for identifying superior dopants. The overlap between the dopant s- and the Te p-state is maximized, if the spatial overlap of both orbitals is maximized and their energetic difference is minimized. This simple design rule has enabled us to screen out Al as a very efficient dopant to enhance the local density of states for SnTe. In conjunction with doping Sb to tune the carrier concentration and alloying with AgBiTe2 to promote band convergence, as well as introducing dislocations to impede phonon propagation, a record-high average ZT of 1.15 between 300 and 873 K and a large ZT of 0.36 at 300 K is achieved in Sn0.8Al0.08Sb0.15Te-4%AgBiTe2.

9.
Nat Commun ; 15(1): 4231, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762611

RESUMO

N-type polycrystalline SnSe is considered as a highly promising candidates for thermoelectric applications due to facile processing, machinability, and scalability. However, existing efforts do not enable a peak ZT value exceeding 2.0 in n-type polycrystalline SnSe. Here, we realized a significant ZT enhancement by leveraging the synergistic effects of divacancy defect and introducing resonance level into the conduction band. The resonance level and increased density of states resulting from tungsten boost the Seebeck coefficient. The combination of the enhanced electrical conductivity (achieved by increasing carrier concentration through WCl6 doping and Se vacancies) and large Seebeck coefficient lead to a high power factor. Microstructural analyses reveal that the co-existence of divacancy defects (Se vacancies and Sn vacancies) and endotaxial W- and Cl-rich nanoprecipitates scatter phonons effectively, resulting in ultralow lattice conductivity. Ultimately, a record-high peak ZT of 2.2 at 773 K is achieved in n-type SnSe0.92 + 0.03WCl6.

10.
Adv Sci (Weinh) ; 10(17): e2206342, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092577

RESUMO

MnTe has been considered a promising candidate for lead-free mid-temperature range thermoelectric clean energy conversions. However, the widespread use of this technology is constrained by the relatively low-cost performance of materials. Developing environmentally friendly thermoelectrics with high performance and earth-abundant elements is thus an urgent task. MnTe is a candidate, yet a peak ZT of 1.4 achieved so far is less satisfactory. Here, a remarkably high ZT of 1.6 at 873 K in MnTe system is realized by facilitating multiple valence band convergence and localized lattice engineering. It is demonstrated that SbGe incorporation promotes the convergence of multiple electronic valence bands in MnTe. Simultaneously, the carrier concentration can be optimized by SbGeS alloying, which significantly enhances the power factor. Simultaneously, MnS nanorods combined with dislocations and lattice distortions lead to strong phonon scattering, resulting in a markedly low lattice thermal conductivity(κlat ) of 0.54 W m K-1 , quite close to the amorphous limit. As a consequence, extraordinary thermoelectric performance is achieved by decoupling electron and phonon transport. The vast increase in ZT promotes MnTe as an emerging Pb-free thermoelectric compound for a wide range of applications in waste heat recovery and power generation.

11.
ACS Nano ; 17(1): 801-810, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36580686

RESUMO

SnSe single crystals have gained great interest due to their excellent thermoelectric performance. However, polycrystalline SnSe is greatly desired due to facile processing, machinability, and scale-up application. Here, we report an outstanding high average ZT of 0.88 as well as a high peak ZT of 1.92 in solution-processed SnSe nanoplates. Nanosized boundaries formed by nanoplates and lattice strain created by lattice dislocations and stacking faults effectively scatter heat-carrying phonons, resulting in an ultralow lattice thermal conductivity of 0.19 W m-1 K-1 at 873 K. Ultraviolet photoelectron spectroscopy reveals that Ge and In incorporation produces an enhanced density of states in the electronic structure of SnSe, resulting in a large Seebeck coefficient. Ge and In codoping not only optimizes the Seebeck coefficient but also substantially increases the carrier concentration and electrical conductivity, helping to maintain a high power factor over a wide temperature range. Benefiting from an enhanced power factor and markedly reduced lattice thermal conductivity, high average ZT and peak ZT are achieved in Ge- and In-codoped SnSe nanoplates. This work achieves an ultrahigh average ZT of 0.88 in polycrystalline SnSe by adopting nontoxic element doping, potentially expanding its usefulness for various thermoelectric generator applications.

12.
ACS Appl Mater Interfaces ; 14(3): 4091-4099, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35001609

RESUMO

SnSe crystals have gained considerable interest for their outstanding thermoelectric performance. Here, we achieve excellent thermoelectric properties in Sn0.99-xPbxZn0.01Se crystals via valence band convergence and point-defect engineering strategies. We demonstrate that Pb and Zn codoping converges the energy offset between multiple valence bands by significantly modifying the band structure, contributing to the enhancement of the Seebeck coefficient. The carrier concentration and electrical conductivity can be optimized, leading to an enhanced power factor. The dual-atom point-defect effect created by the substitution of Pb and Zn in the SnSe lattice introduces strong phonon scattering, significantly reducing the lattice thermal conductivity to as low as 0.284 W m-1 K-1. As a result, a maximum ZT value of 1.9 at 773 K is achieved in Sn0.93Pb0.06Zn0.01Se crystals along the bc-plane direction. This study highlights the crucial role of manipulating multiple electronic valence bands in further improving SnSe thermoelectrics.

13.
Chem Commun (Camb) ; 55(72): 10701-10704, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31429464

RESUMO

Newfangled frangipani-like [MV5O6(µ3-O)5(SO4)(COO)5] (M = Nb/W) polyanions served as 5-connected molecular building blocks (MBBs) that simultaneously assembled with 4-connected [V5O9Cl] MBBs and tricarboxylate ligands (H3BTC) to form two new polyoxovanadate-based metal-organic polyhedra {[MV5O6(µ3-O)5(SO4)]4[V5O9Cl]4(BTC)12} with undiscovered "near-miss Johnson solid" geometry. Moreover, the variable-temperature magnetic susceptibilities were investigated.

14.
Dalton Trans ; 47(37): 12979-12983, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30168569

RESUMO

Two functionalized polyoxovanadate-based metal-organic polyhedra with heterocube formations are synthesized under solvothermal conditions. The structures of VMOP-18 and VMOP-19 display similar cuboctahedral geometries when the polyoxovanadate {V6O6(OCH3)9X(COO)3}n- (X = VO4, n = 1; SO4, n = 2) building units and organic ligands are considered as triangular faces of the polyhedra. Each cuboctahedron was surrounded by eight neighbouring cuboctahedra via strong C-Hπ interactions, leading to a 3D open supramolecular structure. Furthermore, the absorption ability toward the ionic dyes of VMOP-18 was investigated. Only cationic dyes can be absorbed into the cavity of VMOP-18, which indicates that the cationic dye absorption process is an ion-exchange process.

15.
Dalton Trans ; 45(38): 14898-14901, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27711846

RESUMO

Two isostructural vanadium-based metal-organic polyhedra (denoted as VMOP-16 and VMOP-17) were synthesized by a solvothermal method, which are built from unprecedented {V7} isopolyoxometalate clusters and dicarboxylate ligands. To our knowledge, the {V7} second building unit is reported for the first time and features the highest nuclearity of vanadium-oxygen clusters compared with reported vanadium-based MOPs.

16.
Chem Commun (Camb) ; 52(62): 9632-5, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27363544

RESUMO

Unprecedented Anderson-like alkoxo-polyoxovanadate [V6O6(OCH3)9(µ6-SO4)(COO)3](2-) polyanions can serve as 3-connected second building units (SBUs) that assemble with dicarboxylate or tricarboxylate ligands to form a new family of metal organic tetrahedrons of V4E6 and V4F4 type (V = vertex, E = edge, and F = face). To our knowledge, this alkoxo-polyoxovanadate-based SBU is the first ever reported.

17.
Talanta ; 281: 126853, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39317068

RESUMO

In today's society, heavy metal ions and antibiotic contaminants have caused great harm to water systems and human health. In this study, six isostructural lanthanide metal-organic frameworks [Ln(H3imda)2(TPA)(H2O)2](Tb for CUST-881, Eu for CUST-882, Dy for CUST-883, Er for CUST-884, Nd for CUST-885, Sm for CUST-886) were constructed by selecting terephthalic acid (TPA) and 4,5-Imidazoledicarboxylic acid (H3imda) and lanthanide metal ions via solvethermal method. Among them, CUST-881 and CUST-882 can selectively detect Fe3+, Cr2O72-, CrO42, and ceftriaxone sodium (CRO) in water systems and uric acid in urine. CUST-881 shows very low detection limits for these five substances. Furthermore, Principal Component Analysis (PCA) was used to distinguish Fe3+, Cr2O72-, CrO42-, and CRO in water. To our knowledge, this is the first time that they have been able to be simultaneously distinguished. In addition, the possible sensing mechanism was studied through UV-visible spectroscopy, Infrared spectroscopy, and PXRD analysis. Furthermore, the probe also showed satisfactory repeatability and recovery when applied to UA samples that simulated urine. Based on the above results, lanthanide metal-organic frameworks have great potential for practical monitoring of contaminants in water environments.


Assuntos
Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Poluentes Químicos da Água , Estruturas Metalorgânicas/química , Elementos da Série dos Lantanídeos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/urina , Biomarcadores/urina , Biomarcadores/análise , Medições Luminescentes/métodos , Humanos , Ácidos Ftálicos/química , Ácido Úrico/urina , Ácido Úrico/química , Limite de Detecção , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa