Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Opt Express ; 32(3): 3698-3709, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297585

RESUMO

In this paper, we use the method of high order TMn1 mode selection from the concept of narrow-band Smith-Purcell radiation (SPR) for powerful, over-mode, multi-gap extended interaction circuit designs toward millimeter wave and Terahertz (THz) region. As a core part, the multiple gaps interaction structure, equivalent to a subwavelength hole array (SHA), excites the narrow band SPR when an electron beam is injected. The SPR energy is collected by a pair of closed cavities, which satisfies (n-1) standing wave units. The SPR energy in the optimized cavity allows a high index n TMn1 mode operation to achieve the strongest Ez field and high characteristic impedance in a closed multi-gap resonant circuit. This provides an effective design to establish a stable high-order TMn1 mode that supports extended interaction circuits with large cross sections. A 0.46 THz extended interaction circuit, employing the novel high order TM51-2π mode operation output structure, has been designed to demonstrate the efficient beam-wave interaction in the proposed system. The method of TMn1 mode selection provides new insight into the understanding of the high-frequency extended interaction circuits by introducing the SPR concept, benefiting the development of millimeter wave and THz vacuum electron devices (VEDs).

2.
Opt Express ; 31(11): 18420-18429, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381553

RESUMO

Vacuum electronic devices utilizing free-electron-based mechanisms are a crucial class of terahertz radiation sources that operate by modulating electron beams. In this study, we introduce what we believe is a novel approach to enhance the second harmonic of electron beams and substantially increase the output power at higher frequencies. Our method employs a planar grating for fundamental modulation and a transmission grating operating in the backward region to augment the harmonic coupling. The outcome is a high power output of the second harmonic signal. Contrasting with traditional linear electron beam harmonic devices, the proposed structure can achieve an output power increase of an order of magnitude. We have investigated this configuration computationally within the G-band. Our findings indicate that an electron beam density of 50 A/cm2 at 31.5 kV can produce a 0.202 THz center frequency signal with an output power of 4.59 W. As the electron beam voltage is adjusted from 23 kV to 38.5 kV, the output signal frequency shifts from 0.195 THz to 0.205 THz, generating several watts of power output. The starting oscillation current density at the center frequency point is 28 A/cm2, which is significantly lower in the G-band compared to conventional electron devices. This reduced current density has substantial implications for the advancement of terahertz vacuum devices.

3.
Histopathology ; 83(2): 286-297, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37099413

RESUMO

AIMS: Fibroadipose vascular anomaly (FAVA) is a complex vascular malformation that is likely to be under-recognised. In this study we aimed to report the pathological features and somatic PIK3CA mutations associated with the most common clinicopathological features. METHODS AND RESULTS: Cases were identified by reviewing the lesions resected from patients with FAVA registered at our Haemangioma Surgery Centre and unusual intramuscular vascular anomalies in our pathology database. There were 23 males and 52 females, who ranged in age from 1 to 51 years. Most cases occurred in the lower extremities (n = 62). The majority of the lesions were intramuscular, with a few disrupting the overlying fascia and involving subcutaneous fat (19 of 75), and a minority of the cases had cutaneous vascular stains (13 of 75). Histopathologically, the lesion was composed of anomalous vascular components that were intertwined with mature adipocytic and dense fibrous tissues and vascular components with: (a) clusters of thin-walled channels, some with blood-filled nodules and others with thin walls resembling pulmonary alveoli; (b) numerous small vessels (arteries, veins and indeterminate channels) - proliferative small blood vessels were often mixed with adipose tissue; (c) larger abnormal venous channels usually irregularly and sometimes excessively muscularised; (d) lymphoid aggregates or lymphoplasmacytic aggregates were usually observed; and (e) lymphatic malformations were sometimes seen as minor elements. All patients had their lessons subjected to PCR, and 53 patients had somatic PIK3CA mutations (53 of 75). CONCLUSIONS: FAVA is a slow-flow vascular malformation with specific clinicopathological and molecular characteristics. Its recognition is fundamental for its clinical/prognostic implications and for targeted therapy.


Assuntos
Doenças Vasculares , Malformações Vasculares , Masculino , Feminino , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Malformações Vasculares/genética , Malformações Vasculares/patologia , Tecido Adiposo/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética
4.
Pediatr Radiol ; 53(3): 404-414, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36271054

RESUMO

BACKGROUND: As a complex vascular malformation, fibro-adipose vascular anomaly was first proposed in 2014. Its overlap with other vascular malformations regarding imaging and clinical features often leads to misdiagnosis and improper management. OBJECTIVE: To construct a radiomics-based machine learning model to help radiologists differentiate fibro-adipose vascular anomaly from common venous malformations. MATERIALS AND METHODS: We retrospectively analyzed 178 children, adolescents and young adults with vascular malformations (41 fibro-adipose vascular anomaly and 137 common vascular malformation cases) who underwent MRI before surgery between May 2012 to January 2021. We extracted radiomics features from T1-weighted images and fat-saturated (FS) T2-weighted images and further selected features through least absolute shrinkage and selection operator (LASSO) and Boruta methods. We established eight weighted logistic regression classification models based on various combinations of feature-selection strategies (LASSO or Boruta) and sequence types (single- or multi-sequence). Finally, we evaluated the performance of each model by the mean area under the receiver operating characteristics curve (ROC-AUC), sensitivity and specificity in 10 runs of repeated k-fold (k = 10) cross-validation. RESULTS: Two multi-sequence models based on axial FS T2-W, coronal FS T2-W and axial T1-W images showed promising performance. The LASSO-based multi-sequence model achieved an AUC of 97%±3.8, a sensitivity of 94%±12.4 and a specificity of 89%±9.0. The Boruta-based multi-sequence model achieved an AUC of 97%±3.7, a sensitivity of 95%±10.5 and a specificity of 87%±9.0. CONCLUSION: The radiomics-based machine learning model can provide a promising tool to help distinguish fibro-adipose vascular anomaly from common venous malformations.


Assuntos
Pneumopatias , Malformações Vasculares , Adulto Jovem , Adolescente , Criança , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Aprendizado de Máquina
5.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050577

RESUMO

In this paper, an angular radial extended interaction amplifier (AREIA) that consists of a pair of angular extended interaction cavities is proposed. Both the convergence angle cavity and the divergence angle cavity, which are designed for the converging beam and diverging beam, respectively, are investigated to present the potential of the proposed AREIA. They are proposed and explored to improve the beam-wave interaction capability of W-band extended interaction klystrons (EIKs). Compared to conventional radial cavities, the angular cavities have greatly decreased the ohmic loss area and increased the characteristic impedance. Compared to the sheet beam (0°) cavity, it has been found that the convergence angle cavity has a higher effective impedance and the diverging beam has a weaker space-charge effect under the same ideal electron beam area; the advantages become more obvious as the propagation distance increases. Particle-in-cell (PIC) results have shown that the diverging beam (8°) EIA performs better at an output power of 94 GHz under the condition of lossless, while the converging beam (-2°) EIA has a higher output power of 6.24 kW under the conditions of ohmic loss, an input power of 0.5 W, and an ideal electron beam of 20.5 kV and 1.5 A. When the loss increases and the beam current decreases, the output power of the -2° EIA can be improved by nearly 30% compared to the 0° EIA, and the -2° EIA has a greatly improved beam-wave interaction capacity than conventional EIAs under those conditions. In addition, an angular radial electron gun is designed.

6.
Sensors (Basel) ; 23(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37430677

RESUMO

In this paper, a novel staggered double-segmented grating slow-wave structure (SDSG-SWS) is developed for wide-band high-power submillimeter wave traveling-wave tubes (TWTs). The SDSG-SWS can be considered as a combination of the sine waveguide (SW) SWS and the staggered double-grating (SDG) SWS; that is, it is obtained by introducing the rectangular geometric ridges of the SDG-SWS into the SW-SWS. Thus, the SDSG-SWS has the advantages of the wide operating band, high interaction impedance, low ohmic loss, low reflection, and ease of fabrication. The analysis for high-frequency characteristics shows that, compared with the SW-SWS, the SDSG-SWS has higher interaction impedance when their dispersions are at the same level, while the ohmic loss for the two SWSs remains basically unchanged. Furthermore, the calculation results of beam-wave interaction show that the output power is above 16.4 W for the TWT using the SDSG-SWS in the range of 316 GHz-405 GHz with a maximum power of 32.8 W occurring at 340 GHz, whose corresponding maximum electron efficiency is 2.84%, when the operating voltage is 19.2 kV and the current is 60 mA.

7.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108273

RESUMO

Understanding the vibrational information encoded within the terahertz (THz) spectrum of biomolecules is critical for guiding the exploration of its functional responses to specific THz radiation wavelengths. This study investigated several important phospholipid components of biological membranes-distearoyl phosphatidylethanolamine (DSPE), dipalmitoyl phosphatidylcholine (DPPC), sphingosine phosphorylcholine (SPH), and lecithin bilayer-using THz time-domain spectroscopy. We observed similar spectral patterns for DPPC, SPH, and the lecithin bilayer, all of which contain the choline group as the hydrophilic head. Notably, the spectrum of DSPE, which has an ethanolamine head group, was different. Interestingly, density functional theory calculations confirmed that the absorption peak common to DSPE and DPPC at approximately 3.0 THz originated from a collective vibration of their similar hydrophobic tails. Accordingly, the cell membrane fluidity of RAW264.7 macrophages with irradiation at 3.1 THz was significantly enhanced, leading to improved phagocytosis. Our results highlight the importance of the spectral characteristics of the phospholipid bilayers when studying their functional responses in the THz band and suggest that irradiation at 3.1 THz is a potential non-invasive strategy to increase the fluidity of phospholipid bilayers for biomedical applications such as immune activation or drug administration.


Assuntos
Fosfolipídeos , Espectroscopia Terahertz , Lecitinas , Espectroscopia Terahertz/métodos
8.
Opt Express ; 29(5): 7767-7777, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726272

RESUMO

The use and control of the extraordinary optical transmission through subwavelength hole arrays has enormous application potential in photonic devices. In this paper, we propose a subwavelength hole array with inner tunnels, for which the Smith-Purcell radiation (SPR) with this enhanced transmission phenomenon in THz is excited when the transmission peak locates in the SPR band. The SPR is monitored using particle-in-cell simulations in order to analyze the mechanisms responsible for improving the radiation coherence. Analysis of the electron energy loss reveals that the proposed subwavelength hole array with inner tunnels outperforms a conventional subwavelength grating array with respect to SPR generation efficiency. As SPR plays a significant role in research on particle diagnosis and terahertz radiation sources, the performance of the proposed structure suggests that it has high application potential.

9.
Sensors (Basel) ; 21(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066299

RESUMO

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/µL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 µL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


Assuntos
Micro-Ondas , Água
10.
Biochemistry ; 59(46): 4429-4438, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33166472

RESUMO

Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Vírus dos Macacos de Mason-Pfizer/genética , RNA Viral/química , Eletroforese em Gel de Poliacrilamida Nativa , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , Ribossomos/genética , Ribossomos/virologia
11.
J Membr Biol ; 253(3): 271-286, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32405692

RESUMO

Membrane proteins are the major component of plasma membranes, and they play crucial roles in all organisms. To understand the influence of the presence of KcsA channel on cell membrane electroporation induced by picosecond pulse trains (psPT), in this paper, the electroporation of KcsA membrane protein system and bare lipid bilayer system (POPC) with the applied psPT are simulated using molecular dynamics (MD) method. First, we find that the average pore formation time of the KcsA system is longer than the bare system with the applied psPT. In the KcsA system, water protrusions appear more slowly. Then, the system size effects of psPT in the MD simulations are investigated. When the system size decreases, the average pore formation time of small KcsA membrane protein system is shorter than the bare system with the applied psPT. It is found that the psPT makes the protein fluctuation of small system increase greatly; meanwhile the instability of protein disturbs the water and then affects the water protrusion appearance time. Furthermore, it shows that the protein fluctuation of constant electric field is smaller than that of psPT and no field, and protein fluctuation increases with the psPT repetition frequency increasing.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Eletricidade , Eletroporação , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Modelos Teóricos , Conformação Molecular , Relação Estrutura-Atividade
12.
Phys Chem Chem Phys ; 22(17): 9316-9321, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32309833

RESUMO

Local oriented intense electric fields play a vital role in biochemical reactions such as enzyme catalysis. Many researchers have gradually applied external oriented electric fields to control specific chemical reactions. The rapidly developing intense field of terahertz technology can provide a strong enough oriented electric field with specific polarization direction on a sub-picosecond timescale, which matches the timescale and intensity requirements for affecting specific ultrafast chemical reactions. Inspired by this, this paper theoretically studied the full quantum model of the proton transfer process in DNA base pair hydrogen bonds induced by intense terahertz radiation (ITR) with a sub-picosecond-oriented electric field through simulation based on density functional theory (DFT) and the Schrodinger equation. The result shows that the ITR with an electric field intensity up to 10 GV m-1 in a specific polarization direction can precisely control the proton transfer process in the base pair hydrogen bonds. Based on flexible optical methods, the ITR is expected to go beyond the traditional techniques for applying strong electric fields to chemical systems through solid electrodes and become a catalyst for controlling chemical reactions or a scalpel to manipulate molecular structures.

13.
J Membr Biol ; 251(5-6): 681-693, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30094474

RESUMO

In this paper, the membrane electroporation induced by the terahertz electric field is simulated by means of the molecular dynamics method. The influences of the waveform and frequency of the applied terahertz electric field on the electroporation and the unique features of the process of the electroporation with the applied terahertz electric field are given. It shows that whether the electroporation can happen depends on the waveform of the applied terahertz electric field when the magnitude is not large enough. No pore appears if the terahertz electric field direction periodically reverses, and dipole moments of the interfacial water and the bulk water keep reversing. The nm-scale single pore forms with the applied terahertz trapezoidal electric field. It is found that the average pore formation time is strongly influenced by the terahertz electric field frequency. An abnormal variation region that shows decline exists on the correlation curve of the average pore formation time and the trapezoidal electric field frequency, whereas the overall trend of the curve is increasing. The decrease of the water oriented polarization degree results in the increase of the electroporation time, and the abnormal variation region appearance may be related to the drastic change of average water hydrogen bond number that is resulted from the resonance of water hydrogen bond network and the applied electric field. Compared to the nanosecond electric pulse and constant electric field, the numbers of the water protrusions and the water bridges are smaller and the pore formation time is relatively longer with the applied terahertz electric field.


Assuntos
Campos Eletromagnéticos , Eletroporação/métodos , Bicamadas Lipídicas/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular
14.
iScience ; 27(4): 109391, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38532884

RESUMO

The biosafety of terahertz (THz) waves has emerged as a new area of concern with the gradual application of terahertz radiation. Even though many studies have been conducted to investigate the influence of THz radiation on living organisms, the biological effects of terahertz waves have not yet been fully revealed. In this study, Caenorhabditis elegans (C. elegans) was used to evaluate the biological consequences of whole-body exposure to 0.263 THz irradiation. The integration of transcriptome sequencing and behavioral tests of C. elegans revealed that high-power THz irradiation damaged the epidermal ultrastructures, inhibited the expression of the cuticle collagen genes, and impaired the movement of C. elegans. Moreover, the genes involved in the immune system and the neural system were dramatically down-regulated by high-power THz irradiation. Our findings offer fresh perspectives on the biological impacts of high-power THz radiation that could cause epidermal damage and provoke a systemic response.

15.
Micromachines (Basel) ; 15(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38930693

RESUMO

Surface plasmon polaritons (SPPs) have become a research hotspot due to their high intensity and subwavelength localization. Through free-electron excitation, a portion of the momentum of moving electrons can be converted into SPPs. Converting highly localized SPPs into a radiated field is an approach with the potential to aid in the development of a light radiation source. Reducing losses of SPPs is currently a critical challenge that needs to be addressed. The lifetime of SPPs in metal films is longer than that in metal blocks. Traditional optical gratings can transform SPPs into radiation to avoid the decay of SPPs in metal; however, they are created by etching metal films, so they tend to alter the dispersion characteristics of these films and will emit radiation in the direction perpendicular to the metal surface. This paper proposes an approach to converting the SPPs of a metal film excited by free electrons into a radiation field via lateral grating and obtaining in-plane radiation. We investigate the properties of SPP lateral radiation. The study of lateral radiation from metal films holds significant importance for SPP radiation sources and SPP on-chip circuit development.

16.
Front Oncol ; 14: 1336763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903724

RESUMO

Background: Kaposiform hemangioendothelioma (KHE) is a rare vascular tumor with a high risk of mortality. Few studies with large samples of KHE have been reported. KHE may develop into the Kasabach-Merritt phenomenon (KMP), which is characterized by thrombocytopenia and consumptive coagulopathy. The features of severe symptomatic anemia and life-threatening low platelets make the management of KHE associated with KMP challenging. Objective: The aim of this study was to examine the clinical characteristics of patients with KHE and discuss the treatment experience for different risk groups of KHE. Methods: Through a retrospective review of 70 patients diagnosed with KHE between 2017 and 2022 in our center, we classify lesions into three clinicopathological stages based on the tumor involving depth, and divided the severity of KHE into three levels by estimating clinicopathological stages and severity of thrombocytopenia. Treatments of different severity groups were estimated with sufficient data. Results: In our cohort, 27% were neonates, and KHE lesion occurred at birth in 84% of patients. There was a slight male predominance (32 girls and 38 boys). Common clinical characteristics included associated coagulation disorder (100%), locally aggressive cutaneous blue-purple mass (89%), thrombocytopenia (78%), and local pain or joint dysfunction (20%). The lower extremities were the dominant location (35%), followed by the trunk (29%), the maxillofacial region and neck (24%), and the upper extremities (10%). Of the total cohort, 78% developed KMP; the median age at which thrombocytopenia occurred was 27.8 days. The median platelet count of patients who were associated with KMP was 24,000/µL in our cohort. Ninety-two percent of patients were given surgery treatment and 89% of these patients were given high-dose methylprednisolone (5-6 mg/kg daily) before surgery. In 55 patients with KMP, 36% were sensitive to high-dose corticosteroid therapy. Patients from the low-risk group (eight cases) underwent operation, all of whom recovered without recurrence after a maximum follow-up of 5 years. Out of 26 patients from the high-risk group, 25 underwent surgery treatment, with 1 case undergoing secondary surgery after recurrence and 1 case taking sirolimus. Out of 36 cases from the extremely high-risk group, 32 underwent surgery (including 2 cases who underwent external carotid artery ligation and catheterization), 3 of whom underwent secondary operation after recurrence, and the remaining 4 cases took medicine. The mean length of having sirolimus was 21 months; two cases stopped taking sirolimus due to severe pneumonia. Two cases died at 1 and 3 months after discharge. Conclusions: Our study describes the largest assessment of high-risk patients with KHE who have undergone an operation to date, with 5 years of follow-up to track recovery, which provides invaluable knowledge for the future treatment of patients with KHE and KMP from different risk groups: Early surgical intervention may be the most definitive treatment option for most patients with KHE; multimodality treatment is the best choice for the extremely high-risk group.

17.
Vasc Endovascular Surg ; 57(2): 106-113, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36168791

RESUMO

OBJECTIVE: To analyse the image characteristics of fibro-adipose vascular anomaly (FAVA) and the value of ultrasound and magnetic resonance imaging (MRI) for its diagnosis. METHODS: The clinical and imaging data characteristics of 10 patients with FAVA admitted to our hospital between January 2018 and December 2020 who underwent ultrasound and MRI diagnosis were retrospectively analysed. RESULTS: A total of 10 patients (six males and four females) with pathologically confirmed FAVA, aged from 3 to 27 years (median: 13 years), underwent ultrasound and MRI; of these, two patients underwent MRI-enhanced examinations. All lesions involved mainly muscle, with a few disruptions and involvements of subcutaneous fat. Five cases were located subcutaneously near the fascia; one case was adjacent to the periosteum. Ultrasound showed fascial tail in seven cases, and MRI showed fascial tail in six cases. Both ultrasound and MRI showed the lesions to be oval-shaped masses with blurred borders and a mean maximum diameter of 99.8 ± 48.7 mm. Ultrasound showed a mass with a mixture of high and low echoic areas. Magnetic resonance imaging imaging showed a heterogeneous, mixed-signal intensity on T1-weighted images, probably influenced by the fibrous and fatty components of the lesion. T2-weighted images showed a mixed-high signal. Enhanced computed tomography scans showed significant heterogeneous enhancement of the lesions. CONCLUSION: Both ultrasound and MRI showed that fascial tail sign is an important imaging feature for FAVA disease; this provides a reliable basis for its diagnosis and can be used to distinguish it from venous malformations, which have no fascial tail signs. Therefore, fascial tail signs can be used as imaging features and require special attention in the diagnosis of FAVA disease.


Assuntos
Doenças Vasculares , Malformações Vasculares , Masculino , Feminino , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Estudos Retrospectivos , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos , Ultrassonografia , Tomografia Computadorizada por Raios X , Malformações Vasculares/diagnóstico por imagem , Malformações Vasculares/terapia , Obesidade
18.
iScience ; 26(10): 107849, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766988

RESUMO

Terahertz science and technology has recently shown new application prospects in artificial intelligence. It is found that terahertz unipolar stimulation can activate cell membrane hydrophilic pores. However, the behaviors of Na+, K+-ATPase and energy consumption during this period remain unknown. This paper investigates these behaviors by Na+, K+-ATPase and electroporation models, based on the interaction theory between terahertz fields and ions at the cellular level. The effective diameters of life ions are considered in the aqueous solution. From results, Na+, K+-ATPases can be activated and stay for a while before close after the stimulation. Their life ion flows are far lower than the flows via the pores. And their power dissipation is as low as 10-11 W in both rat neostriatal neurons and guinea pig ventricular myocytes. The results keep tenable in 0.1-1.2 THz. These lay the basis for investigations of information communication mechanisms in cells under terahertz stimulation.

19.
iScience ; 26(9): 107572, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664616

RESUMO

Intermolecular interactions, including hydrogen bonds, dominate the pairing and unpairing of nucleic acid chains in the transfer process of genetic information. The energy of THz waves just matches with the weak interactions, so THz waves may interact with biomolecules. Here, the dynamic effects of THz electromagnetic (EM) waves on the mechanical unfolding process of RNA hairpins (WT-30nt and its mutants, rHP, SARS-CoV-2, and SRV-1 SF206) are investigated using steered molecular dynamics (SMD) simulations. The results show that THz waves can either promote the unfolding of the double helix of the RNA hairpin during the initial unfolding phase (4-21.8 THz) or significantly enhance (23.8 and 25.5 THz) or weaken (37.4 and 41.2 THz) its structural stability during unfolding. Our findings have important implications for applying THz waves to regulate dynamic deconvolution processes, such as gene replication, transcription, and translation.

20.
IEEE Trans Med Imaging ; 42(8): 2425-2438, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37028075

RESUMO

Microwave-induced thermoacoustic imaging (MTAI) using low-energy and long-wavelength microwave photons has great potential in detecting deep-seated diseases due to its unique ability of visualizing intrinsic electric properties of tissue in high resolution. However, the low contrast in conductivity between a target (e.g., a tumor) and the surroundings sets a fundamental limit for achieving a high imaging sensitivity, which significantly hinders its biomedical applications. To overcome this limit, we develop a split ring resonator (SRR) topology based MTAI (SRR-MTAI) approach to achieve highly sensitive detection by precise manipulation and efficient delivery of microwave energy. The in vitro experiments show that SRR-MTAI demonstrates an ultrahigh sensitivity of distinguishing a 0.4% difference in saline concentrations and a 2.5-fold enhancement of detecting a tissue target which mimicks a tumor embedded at a depth of 2 cm. The in vivo animal experiments conducted indicate that the imaging sensitivity between a tumor and the surrounding tissue is increased by 3.3-fold using SRR-MTAI. The dramatic enhancement in imaging sensitivity suggests that SRR-MTAI has the potential to open new avenues for MTAI to tackle a variety of biomedical problems that were impossible previously.


Assuntos
Imageamento de Micro-Ondas , Neoplasias , Animais , Micro-Ondas , Diagnóstico por Imagem/métodos , Fótons
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa