Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 459: 132325, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37598515

RESUMO

This study discovered that nanosized zero valent magnesium (nZVMg) could be formed during the electrochemical corrosion of microsized ZVMg (mZVMg) in aqueous solution. It is observed that the nZVMg particle sizes were less than 50 nm with the specific surface area of 54.63 m2/g after it was corroded for 96 h (ZVMg96) at the expense of losing about 60 wt% Mg0. However, the XPS characterization indicated the thickness of Mg(OH)2 layer over ZVMg96 being less than 5 nm, accompanied by the faster electron transfer rate but slower corrosion rate than mZVMg. Most importantly, the removal efficiency of 82 % under high-level trichloroethylene (TCE) at 100 mg/L was achieved by ZVMg96 within one hour relative to 48 % by mZVMg. The rate constant normalized by surface area was 3.11 × 10-2 L/m2/h by ZVMg96 due to the high surface energy of nanoparticles. The degradation products were dependent on the initial TCE concentrations, with environmentally friendly and biodegradable degradation products being generated via hydrodechlorination, hydrogenation and polymerization pathways according to the density functional theory calculations. ZVMg corroded for 14 days illustrated a long-term chemical stability and excellent degradation performance, demonstrating significant application potential in remediating the TCE plumes in groundwater.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa