Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 37(8): 2575-2585, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33587633

RESUMO

We consider the coupled process of phase separation and dewetting of metal alloys of nanoscale thickness deposited on solid substrates. The experiments involve applying nanosecond laser pulses that melt the Ag40Ni60 alloy films in two setups: either on thin supporting membranes or on bulk substrates. These two setups allow for extracting both temporal and spatial scales on which the considered processes occur. The theoretical model involves a longwave version of the Cahn-Hilliard formulation used to describe spinodal decomposition, coupled with an asymptotically consistent longwave-based description of dewetting that occurs due to destabilizing interactions between the alloy and the substrate, modeled using the disjoining pressure approach. Careful modeling, combined with linear stability analysis and fully nonlinear simulations, leads to results consistent with the experiments. In particular, we find that the two instability mechanisms occur concurrently, with the phase separation occurring faster and on shorter temporal scales. The modeling results show a strong influence of the temperature dependence of relevant material properties, implying that such a dependence is crucial for the understanding of the experimental findings. The agreement between theory and experiment suggests the utility of the proposed theoretical approach in helping to develop further experiments directed toward formation of metallic alloy nanoparticles of desired properties.

2.
Langmuir ; 29(30): 9378-87, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23805951

RESUMO

We study the instability of nanometric Cu thin films on SiO2 substrates. The metal is melted by means of laser pulses for some tens of nanoseconds, and during the liquid lifetime, the free surface destabilizes, leading to the formation of holes at first and then in later stages of the instability to metal drops on the substrate. By analyzing the Fourier transforms of the SEM (scanning electron microscope) images obtained at different stages of the metal film evolution, we determine the emerging length scales at relevant stages of the instability development. The results are then discussed within the framework of a long-wave model. We find that the results may differ whether early or final stages of the instability are considered. On the basis of the interpretation of the experimental results, we discuss the influence of the parameters describing the interaction of the liquid metal with the solid substrate. By considering both the dependence of dominant length scales on the film thickness and the measured contact angle, we isolate a model which predicts well the trends found in the experimental data.

3.
Langmuir ; 28(39): 13960-7, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22957759

RESUMO

We consider nanometer-sized fluid annuli (rings) deposited on a solid substrate and ask whether these rings break up into droplets due to the instability of Rayleigh-Plateau-type modified by the presence of the substrate, or collapse to a central drop due to the presence of azimuthal curvature. The analysis is carried out by a combination of atomistic molecular dynamics simulations and a continuum model based on a long-wave limit of Navier-Stokes equations. We find consistent results between the two approaches, and demonstrate characteristic dimension regimes which dictate the assembly dynamics.

4.
Phys Rev E ; 99(4-1): 043105, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108712

RESUMO

We study the contact-angle hysteresis and morphology changes of a liquid drop sitting on a solid substrate inclined with respect to the horizontal at an angle α. This one is always smaller than the critical angle, α_{crit}, above which the drop would start to slide down. The hysteresis cycle is performed for positive and negative α's (|α|<α_{crit}), and a complete study of the changes in contact angles, free surface, and footprint shape is carried out. The drop shape is analyzed in terms of a solution of the equilibrium pressure equation within the long-wave model (lubrication approximation). We obtain a truncated analytical solution describing the static drop shapes that is successfully compared with experimental data. This solution is of practical interest since it allows for a complete description of all the drop features, such as its footprint shape or contact angle distribution around the drop periphery, starting from a very small set of relatively easy to measure drop parameters.

5.
Phys Rev E ; 95(5-1): 053111, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28618593

RESUMO

We study the hydrodynamic mechanisms involved in the motion of the contact line formed at the end region of a liquid filament laying on a planar and horizontal substrate. Since the flow develops under partially wetting conditions, the tip of the filament recedes and forms a bulged region (head) that subsequently develops a neck region behind it. Later the neck breaks up leading to a separated drop, while the rest of the filament restarts the sequence. One main feature of this flow is that the whole dynamics and final drop shapes are strongly influenced by the hysteresis of the contact angle typical in most of the liquid-substrate systems. The time evolution till breakup is studied experimentally and pictured in terms of a hybrid wettability theory which involves the Cox-Voinov hydrodynamic approach combined with the molecular kinetic theory developed by Blake. The parameters of this theory are determined for our liquid-substrate system (silicone oil-coated glass). The experimental results of the retracting filament are described in terms of a simple heuristic model and compared with numerical simulations of the full Navier-Stokes equations. This study is of special interest in the context of pulsed laser-induced dewetting.

6.
Phys Rev E ; 93(1): 013120, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26871167

RESUMO

We study the effects of stochastic thermal fluctuations on the instability of the free surface of a flat liquid metallic film on a solid substrate. These fluctuations are represented by a stochastic noise term added to the deterministic equation for the film thickness within the long-wave approximation. Unlike the case of polymeric films, we find that this noise, while remaining white in time, must be colored in space, at least in some regimes. The corresponding noise term is characterized by a nonzero correlation length, ℓ_{c}, which, combined with the size of the system, leads to a dimensionless parameter ß that accounts for the relative importance of the spatial correlation (ß∼ℓ_{c}^{-1}). We perform the linear stability analysis (LSA) of the film both with and without the noise term and find that for ℓ_{c} larger than some critical value (depending on the system size), the wavelength of the peak of the spectrum is larger than that corresponding to the deterministic case, while for smaller ℓ_{c} this peak corresponds to smaller wavelength than the latter. Interestingly, whatever the value of ℓ_{c}, the peak always approaches the deterministic one for larger times. We compare LSA results with the numerical simulations of the complete nonlinear problem and find a good agreement in the power spectra for early times at different values of ß. For late times, we find that the stochastic LSA predicts well the position of the dominant wavelength, showing that nonlinear interactions do not modify the trends of the early linear stages. Finally, we fit the theoretical spectra to experimental data from a nanometric laser-melted copper film and find that at later times, the adjustment requires smaller values of ß (larger space correlations).

7.
Nanoscale ; 4(23): 7376-82, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23041770

RESUMO

Liquid metal wires supported on substrates destabilize into droplets. The destabilization exhibits many characteristics of the Rayleigh-Plateau model of fluid jet breakup in vacuum. In either case, breakup is driven by unstable, varicose surface oscillations with wavelengths greater than the critical one (λ(c)). Here, by controlling the nanosecond liquid lifetime as well as stability of a rivulet as a function of its length by lithography, we demonstrate the ability to dictate the parallel assembly of wires and particles with precise placement.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa