RESUMO
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major etiologic agent that causes bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Shiga toxin (Stx) is the main virulence factor of EHEC responsible for the progression to HUS. Although many laboratories have made efforts to develop an effective treatment for Stx-mediated HUS, a specific therapy has not been found yet. Human consumption of bovine colostrum is known to have therapeutic effects against several gastrointestinal infections because of the peptide and proteins (including antibodies) with direct antimicrobial and endotoxin-neutralizing effects contained in this fluid. We have previously demonstrated that colostrum from Stx type 2 (Stx2)-immunized pregnant cows effectively prevents Stx2 cytotoxicity and EHEC O157:H7 pathogenicity. In this study we evaluated the preservation of the protective properties of hyperimmune colostrum against Stx2 (HIC-Stx2) after pasteurization and spray-drying processes by performing in vitro and in vivo assays. Our results showed that reconstituted HIC-Stx2 colostrum after pasteurization at 60°C for 60 min and spray-dried under optimized conditions preserved specific IgG that successfully neutralized Stx2 cytotoxicity on Vero cells. Furthermore, this pasteurized/dehydrated and reconstituted HIC-Stx2 preserved the protective capacity against EHEC infection in a weaned mice model. The consumption of hyperimmune HIC-Stx2 bovine colostrum could be effective for HUS prevention in humans as well as in EHEC control in calves. However, further studies need to be done to consider its use for controlling EHEC infections.
Assuntos
Doenças dos Bovinos , Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Animais , Bovinos , Doenças dos Bovinos/prevenção & controle , Chlorocebus aethiops , Colostro , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Feminino , Pasteurização , Gravidez , Células Vero , VirulênciaRESUMO
In a previous work, VP6 recombinant protein was produced using baculovirus system and it was evaluated in a colostrum-deprived calf model. This vaccine was able to protect calves against viral challenge without inducing neutralizing antibodies (NAb), suggesting that another immunological effectors were involved in the protection observed. In this work, groups of cows (n=4) were immunized in the last third of gestation with a bovine rotavirus (BRV) experimental vaccine and with a VP6 subunit vaccine. At birth, colostrums from vaccinated and non-vaccinated cows were processed and viable colostral mononuclear cells were obtained. With the purpose of determining the cytokine patterns generated by cells from immune secretions (colostrums and milk), a relative quantification by real time PCR was standardized. Quantitative real time PCR (qPCR) was used to determine transcript levels of IL-4, IL-6, IL-10, IL-12, IFN-γ and IFN-α from these cells. Colostral and milk mononuclear cells expressed a different cytokine transcript expression pattern regarding the vaccine used. These results demonstrated that the colostral cellular population was active and could exert its action influencing the final immune response.