Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cell ; 175(5): 1380-1392.e14, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30343895

RESUMO

ADP-ribosylation of proteins can profoundly impact their function and serves as an effective mechanism by which bacterial toxins impair eukaryotic cell processes. Here, we report the discovery that bacteria also employ ADP-ribosylating toxins against each other during interspecies competition. We demonstrate that one such toxin from Serratia proteamaculans interrupts the division of competing cells by modifying the essential bacterial tubulin-like protein, FtsZ, adjacent to its protomer interface, blocking its capacity to polymerize. The structure of the toxin in complex with its immunity determinant revealed two distinct modes of inhibition: active site occlusion and enzymatic removal of ADP-ribose modifications. We show that each is sufficient to support toxin immunity; however, the latter additionally provides unprecedented broad protection against non-cognate ADP-ribosylating effectors. Our findings reveal how an interbacterial arms race has produced a unique solution for safeguarding the integrity of bacterial cell division machinery against inactivating post-translational modifications.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas do Citoesqueleto/metabolismo , N-Glicosil Hidrolases/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , ADP-Ribosilação , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Domínio Catalítico , Proteínas do Citoesqueleto/antagonistas & inibidores , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Escherichia coli/metabolismo , Humanos , Mutagênese Sítio-Dirigida , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Serratia/metabolismo , Imagem com Lapso de Tempo
2.
Cell ; 163(3): 607-19, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26456113

RESUMO

Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD(+) and NADP(+). Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.


Assuntos
Toxinas Bacterianas/metabolismo , NAD+ Nucleosidase/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo VI/química , ADP Ribose Transferases/metabolismo , Toxinas Bacterianas/química , Modelos Moleculares , NAD/metabolismo , NAD+ Nucleosidase/química , NADP/metabolismo , Fator Tu de Elongação de Peptídeos/química , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/enzimologia , Sistemas de Secreção Tipo VI/metabolismo
3.
Mol Cell ; 82(18): 3412-3423.e5, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35973425

RESUMO

It is unclear how various factors functioning in the transcriptional elongation by RNA polymerase II (RNA Pol II) cooperatively regulate pause/release and productive elongation in living cells. Using an acute protein-depletion approach, we report that SPT6 depletion results in the release of paused RNA Pol II into gene bodies through an impaired recruitment of PAF1C. Short genes demonstrate a release with increased mature transcripts, whereas long genes are released but fail to yield mature transcripts, due to a reduced processivity resulting from both SPT6 and PAF1C loss. Unexpectedly, SPT6 depletion causes an association of NELF with the elongating RNA Pol II on gene bodies, without any observed functional significance on transcriptional elongation pattern, arguing against a role for NELF in keeping RNA Pol II in the paused state. Furthermore, SPT6 depletion impairs heat-shock-induced pausing, pointing to a role for SPT6 in regulating RNA Pol II pause/release through PAF1C recruitment.


Assuntos
RNA Polimerase II , Fatores de Transcrição , Resposta ao Choque Térmico , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
4.
Cell ; 158(6): 1389-1401, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215494

RESUMO

Cyclic di-adenosine monophosphate (c-di-AMP) is a broadly conserved second messenger required for bacterial growth and infection. However, the molecular mechanisms of c-di-AMP signaling are still poorly understood. Using a chemical proteomics screen for c-di-AMP-interacting proteins in the pathogen Listeria monocytogenes, we identified several broadly conserved protein receptors, including the central metabolic enzyme pyruvate carboxylase (LmPC). Biochemical and crystallographic studies of the LmPC-c-di-AMP interaction revealed a previously unrecognized allosteric regulatory site 25 Å from the active site. Mutations in this site disrupted c-di-AMP binding and affected catalytic activity of LmPC as well as PC from pathogenic Enterococcus faecalis. C-di-AMP depletion resulted in altered metabolic activity in L. monocytogenes. Correction of this metabolic imbalance rescued bacterial growth, reduced bacterial lysis, and resulted in enhanced bacterial burdens during infection. These findings greatly expand the c-di-AMP signaling repertoire and reveal a central metabolic regulatory role for a cyclic dinucleotide.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Listeria monocytogenes/metabolismo , Piruvato Carboxilase/química , Piruvato Carboxilase/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Bacteriólise , Sítios de Ligação , Cristalografia por Raios X , Interações Hospedeiro-Patógeno , Listeria monocytogenes/enzimologia , Listeria monocytogenes/crescimento & desenvolvimento , Listeriose/microbiologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular
5.
Mol Cell ; 81(21): 4413-4424.e5, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34480849

RESUMO

Based on in vitro studies, it has been demonstrated that the DSIF complex, composed of SPT4 and SPT5, regulates the elongation stage of transcription catalyzed by RNA polymerase II (RNA Pol II). The precise cellular function of SPT5 is not clear, because conventional gene depletion strategies for SPT5 result in loss of cellular viability. Using an acute inducible protein depletion strategy to circumvent this issue, we report that SPT5 loss triggers the ubiquitination and proteasomal degradation of the core RNA Pol II subunit RPB1, a process that we show to be evolutionarily conserved from yeast to human cells. RPB1 degradation requires the E3 ligase Cullin 3, the unfoldase VCP/p97, and a novel form of CDK9 kinase complex. Our study demonstrates that SPT5 stabilizes RNA Pol II specifically at promoter-proximal regions, permitting RNA Pol II release from promoters into gene bodies and providing mechanistic insight into the cellular function of SPT5 in safeguarding accurate gene expression.


Assuntos
Proteínas Culina/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Sobrevivência Celular , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Culina/química , Fibroblastos/metabolismo , Humanos , Ácidos Indolacéticos/química , Camundongos , Ubiquitina-Proteína Ligases Nedd4/química , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/química , Proteoma , Proteômica/métodos , Ubiquitina-Proteína Ligases/química , Proteína com Valosina/química , Proteína com Valosina/metabolismo
6.
Immunity ; 46(3): 433-445, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28329705

RESUMO

Bacterial and host cyclic dinucleotides (cdNs) mediate cytosolic immune responses through the STING signaling pathway, although evidence suggests that alternative pathways exist. We used cdN-conjugated beads to biochemically isolate host receptors for bacterial cdNs, and we identified the oxidoreductase RECON. High-affinity cdN binding inhibited RECON enzyme activity by simultaneously blocking the substrate and cosubstrate sites, as revealed by structural analyses. During bacterial infection of macrophages, RECON antagonized STING activation by acting as a molecular sink for cdNs. Bacterial infection of hepatocytes, which do not express STING, revealed that RECON negatively regulates NF-κB activation. Loss of RECON activity, via genetic ablation or inhibition by cdNs, increased NF-κB activation and reduced bacterial survival, suggesting that cdN inhibition of RECON promotes a proinflammatory, antibacterial state that is distinct from the antiviral state associated with STING activation. Thus, RECON functions as a cytosolic sensor for bacterial cdNs, shaping inflammatory gene activation via its effects on STING and NF-κB.


Assuntos
Infecções Bacterianas/imunologia , Proteínas de Bactérias/imunologia , Estradiol Desidrogenases/imunologia , Inflamação/imunologia , NF-kappa B/imunologia , Animais , Ativação Enzimática/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
7.
Proc Natl Acad Sci U S A ; 119(27): e2111262119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776542

RESUMO

All cells contain specialized signaling pathways that enable adaptation to specific molecular stressors. Yet, whether these pathways are centrally regulated in complex physiological stress states remains unclear. Using genome-scale fitness screening data, we quantified the stress phenotype of 739 cancer cell lines, each representing a unique combination of intrinsic tumor stresses. Integrating dependency and stress perturbation transcriptomic data, we illuminated a network of genes with vital functions spanning diverse stress contexts. Analyses for central regulators of this network nominated C16orf72/HAPSTR1, an evolutionarily ancient gene critical for the fitness of cells reliant on multiple stress response pathways. We found that HAPSTR1 plays a pleiotropic role in cellular stress signaling, functioning to titrate various specialized cell-autonomous and paracrine stress response programs. This function, while dispensable to unstressed cells and nematodes, is essential for resilience in the presence of stressors ranging from DNA damage to starvation and proteotoxicity. Mechanistically, diverse stresses induce HAPSTR1, which encodes a protein expressed as two equally abundant isoforms. Perfectly conserved residues in a domain shared between HAPSTR1 isoforms mediate oligomerization and binding to the ubiquitin ligase HUWE1. We show that HUWE1 is a required cofactor for HAPSTR1 to control stress signaling and that, in turn, HUWE1 feeds back to ubiquitinate and destabilize HAPSTR1. Altogether, we propose that HAPSTR1 is a central rheostat in a network of pathways responsible for cellular adaptability, the modulation of which may have broad utility in human disease.


Assuntos
Dano ao DNA , Aptidão Genética , Proteínas Nucleares , Estresse Fisiológico , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Sequência Conservada , Dano ao DNA/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios Proteicos , Transdução de Sinais/genética , Estresse Fisiológico/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Nucleic Acids Res ; 50(22): 12739-12753, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36533433

RESUMO

Bacteria can adapt in response to numerous stress conditions. One such stress condition is zinc depletion. The zinc-sensing transcription factor Zur regulates the way numerous bacterial species respond to severe changes in zinc availability. Under zinc sufficient conditions, Zn-loaded Zur (Zn2-Zur) is well-known to repress transcription of genes encoding zinc uptake transporters and paralogues of a few ribosomal proteins. Here, we report the discovery and mechanistic basis for the ability of Zur to up-regulate expression of the ribosomal protein L31 in response to zinc in E. coli. Through genetic mutations and reporter gene assays, we find that Zur achieves the up-regulation of L31 through a double repression cascade by which Zur first represses the transcription of L31p, a zinc-lacking paralogue of L31, which in turn represses the translation of L31. Mutational analyses show that translational repression by L31p requires an RNA hairpin structure within the l31 mRNA and involves the N-terminus of the L31p protein. This work uncovers a new genetic network that allows bacteria to respond to host-induced nutrient limiting conditions through a sophisticated ribosomal protein switching mechanism.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Interações entre Hospedeiro e Microrganismos
9.
Am J Physiol Lung Cell Mol Physiol ; 325(1): L54-L65, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37256658

RESUMO

Lung infections caused by antibiotic-resistant strains of Pseudomonas aeruginosa are difficult to eradicate in immunocompromised hosts such as those with cystic fibrosis. We previously demonstrated that extracellular vesicles (EVs) secreted by primary human airway epithelial cells (AECs) deliver microRNA let-7b-5p to P. aeruginosa to suppress biofilm formation and increase sensitivity to beta-lactam antibiotics. In this study, we show that EVs secreted by AECs transfer multiple distinct short RNA fragments to P. aeruginosa that are predicted to target the three subunits of the fluoroquinolone efflux pump MexHI-OpmD, thus increasing antibiotic sensitivity. Exposure of P. aeruginosa to EVs resulted in a significant reduction in the protein levels of MexH (-48%), MexI (-50%), and OpmD (-35%). Moreover, EVs reduced planktonic growth of P. aeruginosa in the presence of the fluoroquinolone antibiotic ciprofloxacin by 20%. A mexGHI-opmD deletion mutant of P. aeruginosa phenocopied this increased sensitivity to ciprofloxacin. Finally, we found that a fragment of an 18S ribosomal RNA (rRNA) external transcribed spacer that was transferred to P. aeruginosa by EVs reduced planktonic growth of P. aeruginosa in the presence of ciprofloxacin, reduced the minimum inhibitory concentration of P. aeruginosa for ciprofloxacin by over 50%, and significantly reduced protein levels of both MexH and OpmD. In conclusion, an rRNA fragment secreted by AECs in EVs that targets the fluoroquinolone efflux pump MexHI-OpmD downregulated these proteins and increased the ciprofloxacin sensitivity of P. aeruginosa. A combination of rRNA fragments and ciprofloxacin packaged in nanoparticles or EVs may benefit patients with ciprofloxacin-resistant P. aeruginosa infections.NEW & NOTEWORTHY Human RNA fragments transported in extracellular vesicles interfere with Pseudomonas aeruginosa drug efflux pumps. A combination of rRNA fragments and ciprofloxacin packaged in nanoparticles or EVs may benefit patients with antibiotic-resistant P. aeruginosa infections.


Assuntos
Vesículas Extracelulares , Infecções por Pseudomonas , Humanos , Fluoroquinolonas/farmacologia , Fluoroquinolonas/metabolismo , Pseudomonas aeruginosa , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Ciprofloxacina/metabolismo , Infecções por Pseudomonas/tratamento farmacológico
10.
J Proteome Res ; 21(1): 274-288, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34878788

RESUMO

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS, a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multiparametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We applied Ig-MS to plasma from subjects with severe and mild COVID-19 and immunized subjects after two vaccine doses, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, that could use other antigens of interest to gauge immune responses to vaccination, pathogens, or autoimmune disorders.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Espectrometria de Massas , Glicoproteína da Espícula de Coronavírus/genética
11.
Blood ; 134(19): 1619-1631, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31409672

RESUMO

Mutations in GATA1, which lead to expression of the GATA1s isoform that lacks the GATA1 N terminus, are seen in patients with Diamond-Blackfan anemia (DBA). In our efforts to better understand the connection between GATA1s and DBA, we comprehensively studied erythropoiesis in Gata1s mice. Defects in yolks sac and fetal liver hematopoiesis included impaired terminal maturation and reduced numbers of erythroid progenitors. RNA-sequencing revealed that both erythroid and megakaryocytic gene expression patterns were altered by the loss of the N terminus, including aberrant upregulation of Gata2 and Runx1. Dysregulation of global H3K27 methylation was found in the erythroid progenitors upon loss of N terminus of GATA1. Chromatin-binding assays revealed that, despite similar occupancy of GATA1 and GATA1s, there was a striking reduction of H3K27me3 at regulatory elements of the Gata2 and Runx1 genes. Consistent with the observation that overexpression of GATA2 has been reported to impair erythropoiesis, we found that haploinsufficiency of Gata2 rescued the erythroid defects of Gata1s fetuses. Together, our integrated genomic analysis of transcriptomic and epigenetic signatures reveals that, Gata1 mice provide novel insights into the role of the N terminus of GATA1 in transcriptional regulation and red blood cell maturation which may potentially be useful for DBA patients.


Assuntos
Eritropoese/genética , Fator de Transcrição GATA1/genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/fisiopatologia , Animais , Cromatina/genética , Epigênese Genética/genética , Camundongos , Camundongos Mutantes , Isoformas de Proteínas
12.
Blood ; 133(11): 1171-1185, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30587525

RESUMO

Aberrant activation of mTOR signaling in acute myeloid leukemia (AML) results in a survival advantage that promotes the malignant phenotype. To improve our understanding of factors that contribute to mammalian target of rapamycin (mTOR) signaling activation and identify novel therapeutic targets, we searched for unique interactors of mTOR complexes through proteomics analyses. We identify cyclin dependent kinase 9 (CDK9) as a novel binding partner of the mTOR complex scaffold protein, mLST8. Our studies demonstrate that CDK9 is present in distinct mTOR-like (CTOR) complexes in the cytoplasm and nucleus. In the nucleus, CDK9 binds to RAPTOR and mLST8, forming CTORC1, to promote transcription of genes important for leukemogenesis. In the cytoplasm, CDK9 binds to RICTOR, SIN1, and mLST8, forming CTORC2, and controls messenger RNA (mRNA) translation through phosphorylation of LARP1 and rpS6. Pharmacological targeting of CTORC complexes results in suppression of growth of primitive human AML progenitors in vitro and elicits strong antileukemic responses in AML xenografts in vivo.


Assuntos
Carcinogênese/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Proliferação de Células , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Citarabina/farmacologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Nus , Fosforilação , Biossíntese de Proteínas , Proteoma/análise , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Analyst ; 146(10): 3305-3316, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33999085

RESUMO

Multiple analytical techniques were used to characterize materials from the surfaces of two African sculptures in the collection of the Art Institute of Chicago: a Bamana power object (boli), and a Yoruba wooden sculpture of a female figure. Surface accretions on objects such as these have received relatively little scientific attention to elucidate their composition and function, in part because they are made with complex mixtures of natural materials, which are often unfamiliar and poorly represented in the scientific literature on artists' materials. For this reason, a complement of techniques including Fourier transform infrared spectroscopy and pyrolysis gas chromatography mass spectrometry were applied, along with shotgun proteomics to better understand the nature and biological origin, down to the species level, of the proteinaceous materials. The results highlighted the presence of diverse materials including plant resins, oils, polysaccharides, and inorganic (clay or earth) compounds. In particular, mass spectrometry-based proteomics provided new insights on proteinaceous components, allowing us to identify the presence of sacrificial blood, and more specifically, blood from chicken, goat, sheep and dog. This new scientific evidence supports and supplements knowledge derived from curatorial and field work studies, and opens new doors to understanding the objects' significance and history of use.

14.
J Proteome Res ; 18(11): 3999-4012, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550894

RESUMO

Cocaine addiction afflicts nearly 1 million adults in the United States, and to date, there are no known treatments approved for this psychiatric condition. Women are particularly vulnerable to developing a cocaine use disorder and suffer from more serious cardiac consequences than men when using cocaine. Estrogen is one biological factor contributing to the increased risk for females to develop problematic cocaine use. Animal studies have demonstrated that estrogen (17ß-estradiol or E2) enhances the rewarding properties of cocaine. Although E2 affects the dopamine system, the molecular and cellular mechanisms of E2-enhanced cocaine reward have not been characterized. In this study, quantitative top-down proteomics was used to measure intact proteins in specific regions of the female mouse brain after mice were trained for cocaine-conditioned place preference, a behavioral test of cocaine reward. Several proteoform changes occurred in the ventral tegmental area after combined cocaine and E2 treatments, with the most numerous proteoform alterations on myelin basic protein, indicating possible changes in white matter structure. There were also changes in histone H4, protein phosphatase inhibitors, cholecystokinin, and calmodulin proteoforms. These observations provide insight into estrogen signaling in the brain and may guide new approaches to treating women with cocaine use disorder.


Assuntos
Encéfalo/efeitos dos fármacos , Cocaína/farmacologia , Estradiol/farmacologia , Proteoma/metabolismo , Proteômica/métodos , Animais , Encéfalo/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Estrogênios/farmacologia , Feminino , Camundongos Endogâmicos C57BL , Ovariectomia , Recompensa , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
15.
Fungal Genet Biol ; 125: 1-12, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30639305

RESUMO

The protein kinase MpkA plays a prominent role in the cell wall integrity signaling (CWIS) pathway, acting as the terminal MAPK activating expression of genes which encode cell wall biosynthetic enzymes and other repair functions. Numerous studies focus on MpkA function during cell wall perturbation. Here, we focus on the role MpkA plays outside of cell wall stress, during steady state growth. In an effort to seek other, as yet unknown, connections to this pathway, an mpkA deletion mutant (ΔmpkA) was subjected to phosphoproteomic and transcriptomic analysis. When compared to the control (isogenic parent of ΔmpkA), there is strong evidence suggesting MpkA is involved with maintaining cell wall strength, branching regulation, and the iron starvation pathway, among others. Particle-size analysis during shake flask growth revealed ΔmpkA mycelia were about 4 times smaller than the control strain and more than 90 cell wall related genes show significantly altered expression levels. The deletion mutant had a significantly higher branching rate than the control and phosphoproteomic results show putative branching-regulation proteins, such as CotA, LagA, and Cdc24, have a significantly different level of phosphorylation. When grown in iron limited conditions, ΔmpkA had no difference in growth rate or production of siderophores, whereas the control strain showed decreased growth rate and increased siderophore production. Transcriptomic data revealed over 25 iron related genes with altered transcript levels. Results suggest MpkA is involved with regulation of broad cellular functions in the absence of stress.


Assuntos
Aspergillus nidulans/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Fosfoproteínas/genética , Transcriptoma/genética , Aspergillus nidulans/enzimologia , Aspergillus nidulans/crescimento & desenvolvimento , Proteínas de Ciclo Celular/genética , Parede Celular/genética , Parede Celular/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Ferro/metabolismo , Deleção de Sequência/genética , Transdução de Sinais/genética
16.
Circ Res ; 120(5): 816-834, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-27908912

RESUMO

RATIONALE: Cardiac progenitor cells are an attractive cell type for tissue regeneration, but their mechanism for myocardial remodeling is still unclear. OBJECTIVE: This investigation determines how chronological age influences the phenotypic characteristics and the secretome of human cardiac progenitor cells (CPCs), and their potential to recover injured myocardium. METHODS AND RESULTS: Adult (aCPCs) and neonatal (nCPCs) cells were derived from patients aged >40 years or <1 month, respectively, and their functional potential was determined in a rodent myocardial infarction model. A more robust in vitro proliferative capacity of nCPCs, compared with aCPCs, correlated with significantly greater myocardial recovery mediated by nCPCs in vivo. Strikingly, a single injection of nCPC-derived total conditioned media was significantly more effective than nCPCs, aCPC-derived TCM, or nCPC-derived exosomes in recovering cardiac function, stimulating neovascularization, and promoting myocardial remodeling. High-resolution accurate mass spectrometry with reverse phase liquid chromatography fractionation and mass spectrometry was used to identify proteins in the secretome of aCPCs and nCPCs, and the literature-based networking software identified specific pathways affected by the secretome of CPCs in the setting of myocardial infarction. Examining the TCM, we quantified changes in the expression pattern of 804 proteins in nCPC-derived TCM and 513 proteins in aCPC-derived TCM. The literature-based proteomic network analysis identified that 46 and 6 canonical signaling pathways were significantly targeted by nCPC-derived TCM and aCPC-derived TCM, respectively. One leading candidate pathway is heat-shock factor-1, potentially affecting 8 identified pathways for nCPC-derived TCM but none for aCPC-derived TCM. To validate this prediction, we demonstrated that the modulation of heat-shock factor-1 by knockdown in nCPCs or overexpression in aCPCs significantly altered the quality of their secretome. CONCLUSIONS: A deep proteomic analysis revealed both detailed and global mechanisms underlying the chronological age-based differences in the ability of CPCs to promote myocardial recovery via the components of their secretome.


Assuntos
Miócitos Cardíacos/fisiologia , Proteoma/biossíntese , Proteoma/genética , Proteômica/métodos , Células-Tronco/fisiologia , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Humanos , Recém-Nascido , Masculino , Ratos
17.
Mol Cell Proteomics ; 16(7): 1377-1392, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28455291

RESUMO

Platinum-resistance is a major limitation to effective chemotherapy regimens in high-grade serous ovarian cancer (HGSOC). To better understand the mechanisms involved we characterized the proteome and phosphoproteome in cisplatin sensitive and resistant HGSOC primary cells using a mass spectrometry-based proteomic strategy. PCA analysis identified a distinctive phosphoproteomic signature between cisplatin sensitive and resistant cell lines. The most phosphorylated protein in cisplatin resistant cells was sequestosome-1 (p62/SQSTM1). Changes in expression of apoptosis and autophagy related proteins Caspase-3 and SQSTM1, respectively, were validated by Western blot analysis. A significant increase in apoptosis in the presence of cisplatin was observed in only the sensitive cell line while SQSTM1 revealed increased expression in the resistant cell line relative to sensitive cell line. Furthermore, site-specific phosphorylation on 20 amino acid residues of SQSTM1 was detected indicating a hyper-phosphorylation phenotype. This elevated hyper-phosphorylation of SQSTM1 in resistant HGSOC cell lines was validated with Western blot analysis. Immunofluoresence staining of s28-pSQSTM1 showed inducible localization to autophagosomes upon cisplatin treatment in the sensitive cell line while being constitutively expressed to autophagosomes in the resistant cell. Furthermore, SQSTM1 expression was localized in cancer cells of clinical high-grade serous tumors. Here, we propose hyper-phosphorylation of SQSTM1 as a marker and a key proteomic change in cisplatin resistance development in ovarian cancers by activating the autophagy pathway and influencing down-regulation of apoptosis.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteína Sequestossoma-1/metabolismo , Autofagossomos/metabolismo , Caspase 1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Espectrometria de Massas , Gradação de Tumores , Fosforilação , Estudos Prospectivos , Proteômica/métodos , Proteína Sequestossoma-1/química
18.
Proc Natl Acad Sci U S A ; 113(13): 3639-44, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26957597

RESUMO

The human gut microbiome is a dynamic and densely populated microbial community that can provide important benefits to its host. Cooperation and competition for nutrients among its constituents only partially explain community composition and interpersonal variation. Notably, certain human-associated Bacteroidetes--one of two major phyla in the gut--also encode machinery for contact-dependent interbacterial antagonism, but its impact within gut microbial communities remains unknown. Here we report that prominent human gut symbionts persist in the gut through continuous attack on their immediate neighbors. Our analysis of just one of the hundreds of species in these communities reveals 12 candidate antibacterial effector loci that can exist in 32 combinations. Through the use of secretome studies, in vitro bacterial interaction assays and multiple mouse models, we uncover strain-specific effector/immunity repertoires that can predict interbacterial interactions in vitro and in vivo, and find that some of these strains avoid contact-dependent killing by accumulating immunity genes to effectors that they do not encode. Effector transmission rates in live animals can exceed 1 billion events per minute per gram of colonic contents, and multiphylum communities of human gut commensals can partially protect sensitive strains from these attacks. Together, these results suggest that gut microbes can determine their interactions through direct contact. An understanding of the strategies human gut symbionts have evolved to target other members of this community may provide new approaches for microbiome manipulation.


Assuntos
Microbioma Gastrointestinal/fisiologia , Animais , Bacteroides fragilis/genética , Bacteroides fragilis/imunologia , Bacteroides fragilis/fisiologia , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Genoma Bacteriano , Vida Livre de Germes , Humanos , Masculino , Camundongos , Modelos Animais , Filogenia , Simbiose/genética , Simbiose/imunologia , Simbiose/fisiologia , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/imunologia , Sistemas de Secreção Tipo VI/fisiologia
19.
EMBO Rep ; 17(9): 1281-91, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27432285

RESUMO

The microbiota is a major source of protection against intestinal pathogens; however, the specific bacteria and underlying mechanisms involved are not well understood. As a model of this interaction, we sought to determine whether colonization of the murine host with symbiotic non-toxigenic Bacteroides fragilis could limit acquisition of pathogenic enterotoxigenic B. fragilis We observed strain-specific competition with toxigenic B. fragilis, dependent upon type VI secretion, identifying an effector-immunity pair that confers pathogen exclusion. Resistance against host acquisition of a second non-toxigenic strain was also uncovered, revealing a broader function of type VI secretion systems in determining microbiota composition. The competitive exclusion of enterotoxigenic B. fragilis by a non-toxigenic strain limited toxin exposure and protected the host against intestinal inflammatory disease. Our studies demonstrate a novel role of type VI secretion systems in colonization resistance against a pathogen. This understanding of bacterial competition may be utilized to define a molecularly targeted probiotic strategy.


Assuntos
Colite/microbiologia , Interações Hospedeiro-Patógeno , Mucosa Intestinal/microbiologia , Interações Microbianas , Animais , Antibiose , Bacteroides fragilis/classificação , Bacteroides fragilis/genética , Colite/induzido quimicamente , Colite/patologia , Colite/prevenção & controle , Modelos Animais de Doenças , Imunidade , Mucosa Intestinal/patologia , Camundongos
20.
Biochim Biophys Acta ; 1864(1): 123-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26025770

RESUMO

For the analysis of protein-protein interactions and protein conformations, cross-linking coupled with mass spectrometry (CXMS) has become an essential tool in recent years. A variety of cross-linking reagents are used to covalently link interacting amino acids to identify protein-binding partners. The spatial proximity of cross-linked amino acid residues is used to elucidate structural models of protein complexes. The main challenges for mapping protein-protein interaction are low stoichiometry and low frequency of cross-linked peptides relative to unmodified linear peptides as well as accurate and efficient matches to corresponding peptide sequences with low false discovery rates for identifying the site of cross-link. We evaluate the current state of chemical cross-linking and mass spectrometry applications with the special emphasis on the recent development of informatics data processing and analysis tools that help complexity of interpreting CXMS data. This article is part of a Special Issue entitled:Physiological Enzymology and Protein Functions.


Assuntos
Biologia Computacional/métodos , Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa