Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949825

RESUMO

We reported that salt-sensitive hypertension (SSHTN) is associated with increased pro-inflammatory immune cells, inflammation, and inflammation-associated lymphangiogenesis in the kidneys and gonads of male and female mice.  However, it is unknown whether these adverse end organ effects result from increased blood pressure (BP), elevated levels of salt, or both.  We hypothesized that pharmaceutically lowering BP would not fully alleviate the renal and gonadal immune cell accumulation, inflammation, and lymphangiogenesis associated with SSHTN.  SSHTN was induced in male and female C57BL6/J mice by administering nitro-L-arginine methyl ester hydrochloride (L-NAME; 0.5 mg/mL) in their drinking water for 2 weeks, followed by a 2-week washout period.  Subsequently, the mice received a 3-week 4% high salt diet (SSHTN).  The treatment group underwent the same SSHTN induction protocol but received hydralazine (HYD; 250 mg/L) in their drinking water during the diet phase (SSHTN+HYD). Control mice received tap water and a standard diet for 7 weeks.  In addition to decreasing systolic BP, HYD treatment generally decreased pro-inflammatory immune cells and inflammation in the kidneys and gonads of SSHTN mice.  Furthermore, the decrease in BP partially alleviated elevated renal and gonadal lymphatics and improved renal and gonadal function in mice with SSHTN.  These data demonstrate that high systemic pressure and salt differentially act on end organ immune cells, contributing to the broader understanding of how BP and salt intake collectively shape immune responses and highlight implications for targeted therapeutic interventions.

2.
Clin Sci (Lond) ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949840

RESUMO

Salt-sensitive hypertension (SSHTN) is associated with M1 macrophage polarization and inflammatory responses, leading to inflammation-associated lymphangiogenesis and functional impairment across multiple organs, including kidneys and gonads.  However, it remains unclear whether promoting M2 macrophage polarization can alleviate the hypertension, inflammation, and end organ damage in mice with salt sensitive hypertension (SSHTN).  Male and female mice were made hypertensive by administering nitro-L-arginine methyl ester hydrochloride (L-NAME; 0.5 mg/mL) for 2 weeks in the drinking water, followed by a 2-week interval without any treatments, and a subsequent high salt diet for 3 weeks (SSHTN).  AVE0991 (AVE) was intraperitoneally administered concurrently with the high salt diet.  Control mice were provided standard diet and tap water.  AVE treatment significantly attenuated BP and inflammation in mice with SSHTN.  Notably, AVE promoted M2 macrophage polarization, decreased pro-inflammatory immune cell populations, and improved function in renal and gonadal tissues of mice with SSHTN.  Additionally, AVE decreased lymphangiogenesis in the kidneys and testes of male SSHTN mice and the ovaries of female SSHTN mice.  These findings highlight the effectiveness of AVE in mitigating SSHTN-induced elevated BP, inflammation, and end organ damage by promoting M2 macrophage polarization and suppressing pro-inflammatory immune responses.  Targeting macrophage polarization emerges as a promising therapeutic approach for alleviating inflammation and organ damage in SSHTN.  Further studies are warranted to elucidate the precise mechanisms underlying AVE-mediated effects and to assess its clinical potential in managing SSHTN.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38972305

RESUMO

INTRODUCTION: Hypertension (HTN) is a major cardiovascular disease that can cause and be worsened by renal damage and inflammation. We previously reported that renal lymphatic endothelial cells (LECs) increase in response to HTN and that augmenting lymphangiogenesis in the kidneys reduces blood pressure and renal pro-inflammatory immune cells in mice with various forms of HTN. Our aim was to evaluate the specific changes that renal LECs undergo in HTN. METHODS: We performed single-cell RNA sequencing. Using the angiotensin II-induced and salt-sensitive mouse models of HTN, we isolated renal CD31+ and podoplanin+ cells. RESULTS: Sequencing of these cells revealed three distinct cell types with unique expression profiles, including LECs. The number and transcriptional diversity of LECs increased in samples from mice with HTN, as demonstrated by 597 differentially expressed genes (p<0.01), 274 significantly enriched pathways (p<0.01), and 331 regulons with specific enrichment in HTN LECs. These changes demonstrate a profound inflammatory response in renal LECs in HTN, leading to an increase in genes and pathways associated with inflammation-driven growth and immune checkpoint activity in LECs. CONCLUSION: These results reinforce and help to further explain the benefits of renal LECs and lymphangiogenesis in HTN.

4.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298145

RESUMO

Hypertension affects over a billion adults worldwide and is a major risk factor for cardiovascular disease. Studies have reported that the microbiota and its metabolites regulate hypertension pathophysiology. Recently, tryptophan metabolites have been identified to contribute to and inhibit the progression of metabolic disorders and cardiovascular diseases, including hypertension. Indole propionic acid (IPA) is a tryptophan metabolite with reported protective effects in neurodegenerative and cardiovascular diseases; however, its involvement in renal immunomodulation and sodium handling in hypertension is unknown. In the current study, targeted metabolomic analysis revealed decreased serum and fecal IPA levels in mice with L-arginine methyl ester hydrochloride (L-NAME)/high salt diet-induced hypertension (LSHTN) compared to normotensive control mice. Additionally, kidneys from LSHTN mice had increased T helper 17 (Th17) cells and decreased T regulatory (Treg) cells. Dietary IPA supplementation in LSHTN mice for 3 weeks resulted in decreased systolic blood pressure, along with increased total 24 h and fractional sodium excretion. Kidney immunophenotyping demonstrated decreased Th17 cells and a trend toward increased Treg cells in IPA-supplemented LSHTN mice. In vitro, naïve T cells from control mice were skewed into Th17 or Treg cells. The presence of IPA decreased Th17 cells and increased Treg cells after 3 days. These results identify a direct role for IPA in attenuating renal Th17 cells and increasing Treg cells, leading to improved sodium handling and decreased blood pressure. IPA may be a potential metabolite-based therapeutic option for hypertension.


Assuntos
Doenças Cardiovasculares , Hipertensão , Animais , Camundongos , Células Th17/metabolismo , Pressão Sanguínea , Linfócitos T Reguladores/metabolismo , Doenças Cardiovasculares/metabolismo , Triptofano/metabolismo , Hipertensão/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/metabolismo , Indóis/metabolismo , Sódio/metabolismo
5.
Clin Sci (Lond) ; 136(11): 879-894, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35532133

RESUMO

Hypertension (HTN) is associated with gonadal dysfunction and impaired reproductive health in both men and women. An imbalance in the systemic and renal proinflammatory (M1)/anti-inflammatory (M2) macrophage ratio, increased inflammation, and inflammation-associated lymphangiogenesis have been observed in animals with HTN. However, the impact of HTN on gonadal macrophages, inflammation, and lymphatics remains obscure. We hypothesized that salt-sensitive HTN (SSHTN) and HTN alters gonadal macrophage polarization, which is associated with inflammation, inflammation-associated lymphangiogenesis, and reproductive dysfunction. Flow cytometry analyses revealed a significant increase in M1 macrophages in the testes of SSHTN and nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced HTN (LHTN) mice, with a concurrent decrease in M2 macrophages in SSHTN mice yet an increase in M2 macrophages in LHTN mice. Ovaries from SSHTN mice exhibited an increase in M1 and a decrease in M2 macrophages, while ovaries from LHTN mice had a significant increase in M2 and a decrease in M1 macrophages. Gene expression patterns of proinflammatory cytokines revealed gonadal inflammation in all hypertensive mice. Increased lymphatic vessel density in the gonads of both male and female hypertensive mice was confirmed by immunofluorescence staining for lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1). HTN adversely affected the expression pattern of steroidogenic enzymes, hormone receptors, and secretory proteins in both the testes and ovaries. In line with these results, male hypertensive mice also presented with decreased sperm concentration, and increased percentage of sperm with abnormal morphology, damaged acrosome, and nonfunctional mitochondrial activity. These data demonstrate that HTN alters gonadal macrophage polarization, which is associated with gonadal inflammation, inflammation-associated lymphangiogenesis, and dysfunction.


Assuntos
Hipertensão , Linfangiogênese , Animais , Feminino , Gônadas/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos
6.
Clin Sci (Lond) ; 136(23): 1759-1772, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36345993

RESUMO

BACKGROUND: Hypertension (HTN) is associated with renal proinflammatory immune cell infiltration and increased sodium retention. We reported previously that renal lymphatic vessels, which are responsible for trafficking immune cells from the interstitial space to draining lymph nodes, increase in density under hypertensive conditions. We also demonstrated that augmenting renal lymphatic density can prevent HTN in mice. Whether renal lymphangiogenesis can treat HTN in mice is unknown. We hypothesized that genetically inducing renal lymphangiogenesis after the establishment of HTN would attenuate HTN in male and female mice from three different HTN models. METHODS: Mice with inducible kidney-specific overexpression of VEGF-D (KidVD) experience renal lymphangiogenesis upon doxycycline administration. HTN was induced in KidVD+ and KidVD- mice by subcutaneous release of angiotensin II, administration of the nitric oxide synthase inhibitor L-NAME, or consumption of a 4% salt diet following a L-NAME priming and washout period. After a week of HTN stimuli treatment, doxycycline was introduced. Systolic blood pressure (SBP) readings were taken weekly. Kidney function was determined from urine and serum measures. Kidneys were processed for RT-qPCR, flow cytometry, and imaging. RESULTS: Mice that underwent renal-specific lymphangiogenesis had significantly decreased SBP and renal proinflammatory immune cells. Additionally, renal lymphangiogenesis was associated with a decrease in sodium transporter expression and increased fractional excretion of sodium, indicating improved sodium handling efficiency. CONCLUSIONS: These findings demonstrate that augmenting renal lymphangiogenesis can treat HTN in male and female mice by improving renal immune cell trafficking and sodium handling.


Assuntos
Hipertensão , Linfangiogênese , Camundongos , Masculino , Feminino , Animais , NG-Nitroarginina Metil Éster/farmacologia , Doxiciclina/metabolismo , Rim/metabolismo , Sódio/metabolismo
7.
Clin Sci (Lond) ; 134(24): 3237-3257, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33346358

RESUMO

Hypertension is one of the most prevalent diseases that leads to end organ damage especially affecting the heart, kidney, brain, and eyes. Numerous studies have evaluated the association between hypertension and impaired sexual health, in both men and women. The detrimental effects of hypertension in men includes erectile dysfunction, decrease in semen volume, sperm count and motility, and abnormal sperm morphology. Similarly, hypertensive females exhibit decreased vaginal lubrication, reduced orgasm, and several complications in pregnancy leading to fetal and maternal morbidity and mortality. The adverse effect of hypertension on male and female fertility is attributed to hormonal imbalance and changes in the gonadal vasculature. However, mechanistic studies investigating the impact of hypertension on gonads in more detail on a molecular basis remain scarce. Hence, the aim of the current review is to address and summarize the effects of hypertension on reproductive health, and highlight the importance of research on the effects of hypertension on gonadal inflammation and lymphatics.


Assuntos
Gônadas/fisiopatologia , Hipertensão/fisiopatologia , Inflamação/fisiopatologia , Linfangiogênese , Reprodução/fisiologia , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Gônadas/efeitos dos fármacos , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Inflamação/complicações , Reprodução/efeitos dos fármacos
8.
Am J Hypertens ; 35(10): 842-851, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35704473

RESUMO

The contribution of immune cells in the initiation and maintenance of hypertension is undeniable. Several studies have established the association between hypertension, inflammation, and immune cells from the innate and adaptive immune systems. Here, we provide an update to our 2017 American Journal of Hypertension review on the overview of the cellular immune responses involved in hypertension. Further, we discuss the activation of immune cells and their contribution to the pathogenesis of hypertension in different in vivo models. We also highlight existing gaps in the field of hypertension that need attention. The main goal of this review is to provide a knowledge base for translational research to develop therapeutic strategies that can improve cardiovascular health in humans.


Assuntos
Hipertensão , Imunidade Inata , Humanos , Hipertensão/patologia , Sistema Imunitário , Inflamação
9.
J Hypertens ; 40(10): 1960-1968, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35822591

RESUMO

BACKGROUND: Renal innate immune cell accumulation and inflammation are associated with hypertension. Time restricted feeding (TRF) has been reported to decrease inflammation and blood pressure. Whether TRF can decrease blood pressure by decreasing renal innate immune cells in hypertension is unknown. METHODS AND RESULTS: We determined whether TRF can decrease blood pressure in two separate mouse models of hypertension, N(G)-nitro-L-arginine methyl ester hydrochloride-induced hypertension (LHTN) and salt-sensitive hypertension (SSHTN). Once hypertension was established after 2 days, TRF (12-h food/12-h no food) for 4 weeks significantly decreased systolic blood pressure in both LHTN and SSHTN mice despite no differences in the amount of food eaten or body weight between groups. Activated macrophages and dendritic cells in the kidneys of both LHTN and SSHTN mice were decreased significantly in mice that underwent TRF. This was associated with an improvement in kidney function (decreased serum creatinine, decreased fractional excretion of sodium, and increased creatinine clearance) which achieved significance in LHTN mice and trended towards improvement in SSHTN mice. CONCLUSIONS: Our findings demonstrate that TRF can significantly decrease renal innate immune cells and blood pressure in two mouse models of hypertension.


Assuntos
Jejum , Hipertensão , Animais , Pressão Sanguínea/fisiologia , Imunidade Inata , Inflamação , Rim , Camundongos , NG-Nitroarginina Metil Éster
10.
Cells ; 11(14)2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35883582

RESUMO

(1) Background: Renal immune cells and lymphatic vessel (LV) density have been reported previously to be increased in multiple mouse models of hypertension (HTN). However, whether interstitial levels of HTN stimuli such as angiotensin II, salt, or asymmetric dimethylarginine have a direct or indirect effect on lymphangiogenesis is unknown. We hypothesized that these 3 HTN stimuli directly increase lymphatic endothelial cell (LEC) proliferation, LEC 3-D matrix invasion and vessel formation, and sprouting of mouse mesometrial LVs. (2) Methods: Human LECs (hLECs) and mouse LECs (mLECs) were treated with HTN stimuli while explanted mouse mesometrial LVs were treated with either the same HTN stimuli or with HTN stimuli-conditioned media. Conditioned media was prepared by treating murine splenocytes with HTN stimuli. (3) Results: HTN stimuli had no direct effect on hLEC or mLEC proliferation. Treatment of hLECs with HTN stimuli increased the number of lumen-forming structures and invasion distance (both p < 0.05) in the 3-D matrix but decreased the average lumen diameter and the number of cells per invading structure (both p < 0.05). Conditioned media from HTN-stimuli-treated splenocytes significantly attenuated the decrease in sprout number (aside from salt) and sprout length of mouse mesometrial LVs that is found in the HTN stimuli alone. (4) Conclusions: These data indicate that HTN stimuli indirectly prevent a decrease in lymphangiogenesis through secreted factors from HTN-stimuli-treated immune cells.


Assuntos
Hipertensão , Vasos Linfáticos , Animais , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais , Humanos , Linfangiogênese , Camundongos
11.
Biomolecules ; 11(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34572600

RESUMO

Recent metabolomics studies have identified a wide array of microbial metabolites and metabolite pathways that are significantly altered in hypertension. However, whether these metabolites play an active role in pathogenesis of hypertension or are altered because of this has yet to be determined. In the current study, we hypothesized that metabolite changes common between hypertension models may unify hypertension's pathophysiology with respect to metabolites. We utilized two common mouse models of experimental hypertension: L-arginine methyl ester hydrochloride (L-NAME)/high-salt-diet-induced hypertension (LSHTN) and angiotensin II induced hypertension (AHTN). To identify common metabolites that were altered across both models, we performed untargeted global metabolomics analysis in serum and urine and the resulting data were analyzed using MetaboAnalyst software and compared to control mice. A total of 41 serum metabolites were identified as being significantly altered in any hypertensive model compared to the controls. Of these compounds, 14 were commonly changed in both hypertensive groups, with 4 significantly increased and 10 significantly decreased. In the urine, six metabolites were significantly altered in any hypertensive group with respect to the control; however, none of them were common between the hypertensive groups. These findings demonstrate that a modest, but potentially important, number of serum metabolites are commonly altered between experimental hypertension models. Further studies of the newly identified metabolites from this untargeted metabolomics analysis may lead to a greater understanding of the association between gut dysbiosis and hypertension.


Assuntos
Hipertensão/sangue , Hipertensão/metabolismo , Metaboloma , Metabolômica , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Hipertensão/urina , Masculino , Camundongos Endogâmicos C57BL , Análise de Componente Principal
12.
Pharmaceutics ; 14(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35056980

RESUMO

Chronic interstitial inflammation and renal infiltration of activated immune cells play an integral role in hypertension. Lymphatics regulate inflammation through clearance of immune cells and excess interstitial fluid. Previously, we demonstrated increasing renal lymphangiogenesis prevents hypertension in mice. We hypothesized that targeted nanoparticle delivery of vascular endothelial growth factor-C (VEGF-C) to the kidney would induce renal lymphangiogenesis, lowering blood pressure in hypertensive mice. A kidney-targeting nanoparticle was loaded with a VEGF receptor-3-specific form of VEGF-C and injected into mice with angiotensin II-induced hypertension or LNAME-induced hypertension every 3 days. Nanoparticle-treated mice exhibited increased renal lymphatic vessel density and width compared to hypertensive mice injected with VEGF-C alone. Nanoparticle-treated mice exhibited decreased systolic blood pressure, decreased pro-inflammatory renal immune cells, and increased urinary fractional excretion of sodium. Our findings demonstrate that pharmacologically expanding renal lymphatics decreases blood pressure and is associated with favorable alterations in renal immune cells and increased sodium excretion.

13.
J Hypertens ; 38(5): 874-885, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31913221

RESUMO

OBJECTIVE: Hypertension is associated with renal immune cell accumulation and sodium retention. Lymphatic vessels provide a route for immune cell trafficking and fluid clearance. Whether specifically increasing renal lymphatic density can treat established hypertension, and whether renal lymphatics are involved in mechanisms of blood pressure regulation remain undetermined. Here, we tested the hypothesis that augmenting renal lymphatic density can attenuate blood pressure in established hypertension. METHODS: Transgenic mice with inducible kidney-specific overexpression of VEGF-D ('KidVD+' mice) and KidVD- controls were administered a nitric oxide synthase inhibitor, L-NAME, for 4 weeks, with doxycycline administration beginning at the end of week 1. To identify mechanisms by which renal lymphatics alter renal Na handling, Na excretion was examined in KidVD+ mice during acute and chronic salt loading conditions. RESULTS: Renal VEGF-D induction for 3 weeks enhanced lymphatic density and significantly attenuated blood pressure in KidVD+ mice whereas KidVD- mice remained hypertensive. No differences were identified in renal immune cells, however, the urinary Na excretion was increased significantly in KidVD+ mice. KidVD+ mice demonstrated normal basal sodium handling, but following chronic high salt loading, KidVD+ mice had a significantly lower blood pressure along with increased urinary fractional excretion of Na. Mechanistically, KidVD+ mice demonstrated decreased renal abundance of total NCC and cleaved ENaCα Na transporters, increased renal tissue fluid volume, and increased plasma ANP. CONCLUSION: Our findings demonstrate that therapeutically augmenting renal lymphatics increases natriuresis and reduces blood pressure under sodium retention conditions.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Rim/fisiopatologia , Linfangiogênese/fisiologia , Natriurese/fisiologia , Sódio/metabolismo , Animais , Hipertensão/induzido quimicamente , Masculino , Camundongos , Camundongos Transgênicos , NG-Nitroarginina Metil Éster , Cloreto de Sódio na Dieta , Fator D de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa