Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Cell ; 184(2): 507-520.e16, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33382967

RESUMO

Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We have identified three cell types that regulate aggression in Drosophila: one type is sexually shared, and the other two are sex specific. Shared common aggression-promoting (CAP) neurons mediate aggressive approach in both sexes, whereas functionally downstream dimorphic but homologous cell types, called male-specific aggression-promoting (MAP) neurons in males and fpC1 in females, control dimorphic attack. These symmetric circuits underlie the divergence of male and female aggressive behaviors, from their monomorphic appetitive/motivational to their dimorphic consummatory phases. The strength of the monomorphic → dimorphic functional connection is increased by social isolation in both sexes, suggesting that it may be a locus for isolation-dependent enhancement of aggression. Together, these findings reveal a circuit logic for the neural control of behaviors that include both sexually monomorphic and dimorphic actions, which may generalize to other organisms.


Assuntos
Agressão/fisiologia , Drosophila melanogaster/fisiologia , Lógica , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino , Rede Nervosa/fisiologia , Neurônios/fisiologia , Isolamento Social , Taquicininas/metabolismo
2.
Annu Rev Cell Dev Biol ; 37: 519-547, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613817

RESUMO

Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.


Assuntos
Drosophila melanogaster , Sistema Nervoso , Animais , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Feminino , Masculino , Neurônios/fisiologia , Caracteres Sexuais
4.
Plant Dis ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160128

RESUMO

Visual detection of stromata (brown-black, elevated fungal fruiting bodies) is a primary method for quantifying tar spot early in the season, as these structures are definitive signs of the disease and essential for effective disease monitoring and management. Here, we present Stromata Contour Detection Algorithm version 2 (SCDA v2), which addresses the limitations of the previously developed SCDA version 1 (SCDA v1) without the need for empirical search of the optimal Decision Making Input Parameters (DMIPs), while achieving higher and consistent accuracy in tar spot stromata detection. SCDA v2 operates in two components: (i) SCDA v1 producing tar-spot-like region proposals for a given input corn leaf Red-Green-Blue (RGB) image, and (ii) a pre-trained Convolutional Neural Network (CNN) classifier identifying true tar spot stromata from the region proposals. To demonstrate the enhanced performance of the SCDA v2, we utilized datasets of RGB images of corn leaves from field (low, middle, and upper canopies) and glasshouse conditions under variable environments, exhibiting different tar spot severities at various corn developmental stages. Various accuracy analyses (F1-score, linear regression, and Lin's concordance correlation), showed that SCDA v2 had a greater agreement with the reference data (human visual annotation) than SCDA v1. SCDA v2 achievd 73.7% mean Dice values (overall accuracy), compared to 30.8% for SCDA v1. The enhanced F1-score primarily resulted from eliminating overestimation cases using the CNN classifier. Our findings indicate the promising potential of SCDA v2 for glasshouse and field-scale applications, including tar spot phenotyping and surveillance projects.

5.
Cell ; 133(2): 210-2, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18423192

RESUMO

In a study in this issue, Clyne and Miesenböck (2008) apply an ingenious optogenetic technology to activate neurons that generate male-specific courtship song in flies. This work sheds new light on the neural circuitry underlying sexually dimorphic behaviors in Drosophila.


Assuntos
Drosophila melanogaster/fisiologia , Comportamento Sexual Animal , Animais , Feminino , Luz , Masculino , Neurônios/fisiologia , Caracteres Sexuais , Asas de Animais
6.
Plant Dis ; 107(2): 262-266, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35836387

RESUMO

Tar spot is a major foliar disease of corn caused by the obligate fungal pathogen Phyllachora maydis, first identified in Indiana in 2015. Under conducive weather conditions, P. maydis causes significant yield losses in the United States and other countries, constituting a major threat to corn production. Relatively little is known about resistance to tar spot other than a major quantitative gene that was identified in tropical maize lines. To test for additional sources of resistance against populations of P. maydis in North America, 26 parental inbred lines of the nested associated mapping (NAM) population were evaluated for tar spot resistance in Indiana in replicated field trials under natural infection for 3 years. Tar spot disease severity was scored visually using a 0-to-100% scale. Maximum disease severity (MDS) for tar spot scoring at reproductive growth stage ranged from 0 to 48.3%, with 0% being most resistant and 48.3% being most susceptible. Nine inbred lines were resistant to P. maydis with MDS ranging from 0 to 5.0%, six were moderately resistant (5.2 to 10.6% MDS), two were moderately susceptible (11.7 to 26.0% MDS), and the remaining eight inbred lines were rated as susceptible (30.0 to 48.3% MDS). There was some variability between years, due to higher disease pressure after 2019. Inbred B73, the common parent of the NAM populations, was rated as susceptible, with MDS of 30.0%. The nine highly resistant lines provide a potential source of new genes for genetic analysis and mapping of tar spot resistance in corn.


Assuntos
Doenças das Plantas , Zea mays , Estados Unidos , Zea mays/genética , Zea mays/microbiologia , Indiana , Doenças das Plantas/microbiologia , América do Norte
7.
Phytopathology ; 112(12): 2538-2548, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35815936

RESUMO

Most fungal pathogens secrete effector proteins into host cells to modulate their immune responses, thereby promoting pathogenesis and fungal growth. One such fungal pathogen is the ascomycete Phyllachora maydis, which causes tar spot disease on leaves of maize (Zea mays). Sequencing of the P. maydis genome revealed 462 putatively secreted proteins, of which 40 contain expected effector-like sequence characteristics. However, the subcellular compartments targeted by P. maydis effector candidate (PmEC) proteins remain unknown, and it will be important to prioritize them for further functional characterization. To test the hypothesis that PmECs target diverse subcellular compartments, cellular locations of super yellow fluorescent protein-tagged PmEC proteins were identified using a Nicotiana benthamiana-based heterologous expression system. Immunoblot analyses showed that most of the PmEC-fluorescent protein fusions accumulated protein in N. benthamiana, indicating that the candidate effectors could be expressed in dicot leaf cells. Laser-scanning confocal microscopy of N. benthamiana epidermal cells revealed that most of the P. maydis putative effectors localized to the nucleus and cytosol. One candidate effector, PmEC01597, localized to multiple subcellular compartments including the nucleus, nucleolus, and plasma membrane, whereas an additional putative effector, PmEC03792, preferentially labelled both the nucleus and nucleolus. Intriguingly, one candidate effector, PmEC04573, consistently localized to the stroma of chloroplasts as well as stroma-containing tubules (stromules). Collectively, these data suggest that effector candidate proteins from P. maydis target diverse cellular organelles and could thus provide valuable insights into their putative functions, as well as host processes potentially manipulated by this fungal pathogen.


Assuntos
Doenças das Plantas , Zea mays , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Células Vegetais/metabolismo , Phyllachorales/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
J Neurogenet ; 35(3): 285-294, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34338589

RESUMO

The identification of mutations in the gene fruitless (fru) paved the way for understanding the genetic basis of male sexual behavior in the vinegar fly Drosophila melanogaster. D. melanogaster males perform an elaborate courtship display to the female, ultimately leading to copulation. Mutations in fru have been shown to disrupt most aspects of the male's behavioral display, rendering males behaviorally sterile. The fru genomic locus encodes for multiple transcription factor isoforms from several promoters; only those under the regulation of the most distal P1 promoter are under the control of the sex determination hierarchy and play a role in male-specific behaviors. In this study, we used CRISPR/Cas9-based targeted genome editing of the fru gene, to remove the P1 promoter region. We have shown that removal of the P1 promoter leads to a dramatic decrease in male courtship displays towards females and male-specific sterility. We have expanded the analysis of fru P1-dependent behaviors, examining male's response to courtship song and general activity levels during12-hour light: dark cycles. Our novel allele expands the mutant repertoire available for future studies of fru P1-derived function in D. melanogaster. Our fruΔP1 mutant will be useful for future studies of fru P1-derived function, as it can be homozygosed without disrupting additional downstream promoter function and can be utilized in heterozygous combinations with other extant fru alleles.


Assuntos
Corte , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Tecido Nervoso/genética , Comportamento Sexual Animal/fisiologia , Fatores de Transcrição/genética , Animais , Masculino , Mutação , Regiões Promotoras Genéticas
9.
BMC Genomics ; 21(1): 513, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711450

RESUMO

BACKGROUND: The ascomycete fungus Zymoseptoria tritici (synonyms: Mycosphaerella graminicola, Septoria tritici) is a major pathogen of wheat that causes the economically important foliar disease Septoria tritici blotch. Despite its importance as a pathogen, little is known about the reaction of this fungus to light. To test for light responses, cultures of Z. tritici were grown in vitro for 16-h days under white, blue or red light, and their transcriptomes were compared with each other and to those obtained from control cultures grown in darkness. RESULTS: There were major differences in gene expression with over 3400 genes upregulated in one or more of the light conditions compared to dark, and from 1909 to 2573 genes specifically upregulated in the dark compared to the individual light treatments. Differences between light treatments were lower, ranging from only 79 differentially expressed genes in the red versus blue comparison to 585 between white light and red. Many of the differentially expressed genes had no functional annotations. For those that did, analysis of the Gene Ontology (GO) terms showed that those related to metabolism were enriched in all three light treatments, while those related to growth and communication were more prevalent in the dark. Interestingly, genes for effectors that have been shown previously to be involved in pathogenicity also were upregulated in one or more of the light treatments, suggesting a possible role of light for infection. CONCLUSIONS: This analysis shows that Z. tritici can sense and respond to light with a huge effect on transcript abundance. High proportions of differentially expressed genes with no functional annotations illuminates the huge gap in our understanding of light responses in this fungus. Differential expression of genes for effectors indicates that light could be important for pathogenicity; unknown effectors may show a similar pattern of transcription. A better understanding of the effects of light on pathogenicity and other biological processes of Z. tritici could help to manage Septoria tritici blotch in the future.


Assuntos
Ascomicetos , Doenças das Plantas , Ascomicetos/genética , Transcriptoma , Virulência
10.
Fungal Genet Biol ; 141: 103413, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442667

RESUMO

Septoria tritici blotch (STB), caused by Zymoseptoria tritici (formerly: Mycosphaerella graminicola or Septoria tritici), is one of the most devastating diseases of wheat globally. Understanding genetic diversity of the pathogen has supreme importance in developing best management strategies. However, there is dearth of information on the genetic structure of Z. tritici populations in Ethiopia. Therefore, the present study was targeted to uncover the genetic diversity and population structure of Z. tritici populations from the major wheat-growing areas of Ethiopia. Totally, 182 Z. tritici isolates representing eight populations were analyzed with 14 microsatellite markers. All the microsatellite loci were polymorphic and highly informative, and hence useful genetic tools to depict the genetic diversity and population structure of the pathogen. A wide range of diversity indices including number of observed alleles, effective number of alleles, Shannon's diversity index, number of private alleles, Nei's gene diversity and percentage of polymorphic loci (PPL) were computed to determine genetic variation within populations. A high within-populations genetic diversity was confirmed with gene diversity index and PPL values ranging from 0.34 - 0.58 and 79-100% with overall mean of 0.45 and 94%, respectively. Analysis of molecular variance (AMOVA) revealed a moderate genetic differentiation where 92% of the total genetic variation resides within populations, leaving only 8% among populations. Cluster (UPGMA), PCoA and STRUCTURE analyses did not group the populations into sharply genetically distinct clusters according to their geographical origins, likely due to high gene flow (Nm = 5.66) and reproductive biology of the pathogen. All individual samples shared alleles from two subgroups (K = 2) evidencing high potential of genetic admixture. In conclusion, the microsatellite markers used in the present study were highly informative and thus, helped to dissect the genetic structures of Z. tritici populations in Ethiopia. Among the studied populations, those of East Shewa, Arsi, South West Shewa and Bale showed a high genetic diversity, and hence these areas can be considered as hot spots for investigations planned on the pathogen and host-pathogen interactions. Therefore, the present study not only enriches missing information in Ethiopia but also provides new insights into the epidemiology and genetic structure of Z. tritici in Africa where the agro-climatic conditions and the wheat cropping systems are different from other parts of the world. Such baseline information is useful for designing and implementing durable and effective management strategies.


Assuntos
Ascomicetos/genética , Variação Genética/genética , Genética Populacional , Repetições de Microssatélites/genética , Resistência à Doença/genética , Etiópia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
11.
PLoS Genet ; 12(8): e1005876, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27512984

RESUMO

Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant foliar disease of banana worldwide. Due to the lack of effective host resistance, management of this disease requires frequent fungicide applications, which greatly increase the economic and environmental costs to produce banana. Weekly applications in most banana plantations lead to rapid evolution of fungicide-resistant strains within populations causing disease-control failures throughout the world. Given its extremely high economic importance, two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic diversity. Genetic differentiation was also detected using neutral markers, suggesting strong selection with limited gene flow at the studied geographic scale. Frequencies of fungicide resistance in fungicide-treated plantations were much higher than those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium fulvum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown resistance gene recognizing PfAVR4. Besides adding to our understanding of the overall Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide treatment schedules to combat this pathogen and in improving the efficiency of banana breeding programs.


Assuntos
Ascomicetos/genética , Resistência à Doença/genética , Musa/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Ascomicetos/patogenicidade , Cruzamento , Cromossomos Fúngicos/genética , Variação Genética , Genoma Fúngico , Genótipo , Musa/crescimento & desenvolvimento , Musa/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Retroelementos/genética
12.
Proc Biol Sci ; 285(1892)2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487307

RESUMO

Sex differences in lifespan are ubiquitous, but the underlying causal factors remain poorly understood. Inter- and intrasexual social interactions are well known to influence lifespan in many taxa, but it has proved challenging to separate the role of sex-specific behaviours from wider physiological differences between the sexes. To address this problem, we genetically manipulated the sexual identity of the nervous system-and hence sexual behaviour-in Drosophila melanogaster, and measured lifespan under varying social conditions. Consistent with previous studies, masculinization of the nervous system in females induced male-specific courtship behaviour and aggression, while nervous system feminization in males induced male-male courtship and reduced aggression. Control females outlived males, but masculinized female groups displayed male-like lifespans and male-like costs of group living. By varying the mixture of control and masculinized females within social groups, we show that male-specific behaviours are costly to recipients, even when received from females. However, consistent with recent findings, our data suggest courtship expression to be surprisingly low cost. Overall, our study indicates that nervous system-mediated expression of sex-specific behaviour per se-independent of wider physiological differences between the sexes, or the receipt of aggression or courtship-plays a limited role in mediating sex differences in lifespan.


Assuntos
Drosophila melanogaster/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Longevidade/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Caracteres Sexuais , Fatores Sexuais , Comportamento Social
13.
Proc Natl Acad Sci U S A ; 112(11): 3451-6, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733908

RESUMO

Some of the most damaging tree pathogens can attack woody stems, causing lesions (cankers) that may be lethal. To identify the genomic determinants of wood colonization leading to canker formation, we sequenced the genomes of the poplar canker pathogen, Mycosphaerella populorum, and the closely related poplar leaf pathogen, M. populicola. A secondary metabolite cluster unique to M. populorum is fully activated following induction by poplar wood and leaves. In addition, genes encoding hemicellulose-degrading enzymes, peptidases, and metabolite transporters were more abundant and were up-regulated in M. populorum growing on poplar wood-chip medium compared with M. populicola. The secondary gene cluster and several of the carbohydrate degradation genes have the signature of horizontal transfer from ascomycete fungi associated with wood decay and from prokaryotes. Acquisition and maintenance of the gene battery necessary for growth in woody tissues and gene dosage resulting in gene expression reconfiguration appear to be responsible for the adaptation of M. populorum to infect, colonize, and cause mortality on poplar woody stems.


Assuntos
Adaptação Fisiológica/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/genética , Dosagem de Genes , Transferência Genética Horizontal , Árvores/microbiologia , Madeira/microbiologia , Ascomicetos/patogenicidade , Sequência de Bases , Contagem de Colônia Microbiana , Regulação Fúngica da Expressão Gênica , Especiação Genética , Genoma Fúngico/genética , Interações Hospedeiro-Patógeno/genética , Alcaloides Indólicos/metabolismo , Dados de Sequência Molecular , Nitrogênio/metabolismo , Filogenia , Populus/microbiologia , Proteólise , Sintenia/genética , Fatores de Tempo
14.
PLoS Genet ; 8(11): e1003088, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209441

RESUMO

We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.


Assuntos
Adaptação Fisiológica/genética , Cladosporium/genética , Genoma , Interações Hospedeiro-Patógeno , Sequência de Bases , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Filogenia , Pinus/genética , Pinus/parasitologia , Doenças das Plantas/genética
15.
Water Environ Res ; 87(2): 169-78, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25790519

RESUMO

The objectives of this study were to monitor total phosphorus concentrations and loads along the Cache la Poudre River in Northern Colorado as it flows from a pristine area through urban regions and, finally, through mixed land uses. The study attempted to evaluate the sources and influences of total phosphorus under different hydrologic conditions. Nine sampling events were completed from April 2010 to May 2011 to assess the influence of various hydrologic conditions on aqueous and riverbed sediment total phosphorus concentrations. Total phosphorus concentrations and loads exceeded the in-stream limits proposed by the Colorado Department of Public Health and Environment in all observed hydrologic conditions, and nonpoint sources were significant in high-flow conditions. Reducing nutrients only at water resource recovery facilities (WRRFs) could not achieve the in-stream limits without substantial reduction of non-point-source loads. The study exposed a need for flexibility in WRRF discharge limits based on the overall total phosphorus load in the river from other sources.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , Colorado , Fenômenos Geológicos , Hidrologia , Movimentos da Água
16.
BMC Genomics ; 15: 1132, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25519841

RESUMO

BACKGROUND: In addition to gene identification and annotation, repetitive sequence analysis has become an integral part of genome sequencing projects. Identification of repeats is important not only because it improves gene prediction, but also because of the role that repetitive sequences play in determining the structure and evolution of genes and genomes. Several methods using different repeat-finding strategies are available for whole-genome repeat sequence analysis. Four independent approaches were used to identify and characterize the repetitive fraction of the Mycosphaerella graminicola (synonym Zymoseptoria tritici) genome. This ascomycete fungus is a wheat pathogen and its finished genome comprises 21 chromosomes, eight of which can be lost with no obvious effects on fitness so are dispensable. RESULTS: Using a combination of four repeat-finding methods, at least 17% of the M. graminicola genome was estimated to be repetitive. Class I transposable elements, that amplify via an RNA intermediate, account for about 70% of the total repetitive content in the M. graminicola genome. The dispensable chromosomes had a higher percentage of repetitive elements as compared to the core chromosomes. Distribution of repeats across the chromosomes also varied, with at least six chromosomes showing a non-random distribution of repetitive elements. Repeat families showed transition mutations and a CpA → TpA dinucleotide bias, indicating the presence of a repeat-induced point mutation (RIP)-like mechanism in M. graminicola. One gene family and two repeat families specific to subtelomeres also were identified in the M. graminicola genome. A total of 78 putative clusters of nested elements was found in the M. graminicola genome. Several genes with putative roles in pathogenicity were found associated with these nested repeat clusters. This analysis of the transposable element content in the finished M. graminicola genome resulted in a thorough and highly curated database of repetitive sequences. CONCLUSIONS: This comprehensive analysis will serve as a scaffold to address additional biological questions regarding the origin and fate of transposable elements in fungi. Future analyses of the distribution of repetitive sequences in M. graminicola also will be able to provide insights into the association of repeats with genes and their potential role in gene and genome evolution.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Elementos de DNA Transponíveis/genética , Genoma Fúngico/genética , Triticum/microbiologia , Cromossomos Fúngicos/genética , Anotação de Sequência Molecular , Mutação Puntual , Sequências de Repetição em Tandem/genética , Telômero/genética
17.
PLoS Pathog ; 8(12): e1003037, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236275

RESUMO

The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Cromossomos Fúngicos/genética , Evolução Molecular , Genes Fúngicos/fisiologia , Doenças das Plantas/genética , Ascomicetos/metabolismo , Cromossomos Fúngicos/metabolismo , Elementos de DNA Transponíveis/fisiologia , Estresse Oxidativo/genética , Doenças das Plantas/microbiologia , Mutação Puntual
18.
Environ Sci Technol ; 48(10): 5991-5, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24749865

RESUMO

Efficient use of water, particularly in the western U.S., is an increasingly important aspect of many activities including agriculture, urban, and industry. As the population increases and agriculture and energy needs continue to rise, the pressure on water and other natural resources is expected to intensify. Recent advances in technology have stimulated growth in oil and gas development, as well as increasing the industry's need for water resources. This study provides an analysis of how efficiently water resources are used for unconventional shale development in Northeastern Colorado. The study is focused on the Wattenberg Field in the Denver-Julesberg Basin. The 2000 square mile field located in a semiarid climate with competing agriculture, municipal, and industrial water demands was one of the first fields where widespread use of hydraulic fracturing was implemented. The consumptive water intensity is measured using a ratio of the net water consumption and the net energy recovery and is used to measure how efficiently water is used for energy extraction. The water and energy use as well as energy recovery data were collected from 200 Noble Energy Inc. wells to estimate the consumptive water intensity. The consumptive water intensity of unconventional shale in the Wattenberg is compared with the consumptive water intensity for extraction of other fuels for other energy sources including coal, natural gas, oil, nuclear, and renewables. 1.4 to 7.5 million gallons is required to drill and hydraulically fracture horizontal wells before energy is extracted in the Wattenberg Field. However, when the large short-term total freshwater-water use is normalized to the amount of energy produced over the lifespan of a well, the consumptive water intensity is estimated to be between 1.8 and 2.7 gal/MMBtu and is similar to surface coal mining.


Assuntos
Conservação dos Recursos Naturais , Sedimentos Geológicos/química , Gás Natural/análise , Campos de Petróleo e Gás , Água/química , Colorado , Geografia , Abastecimento de Água
19.
PLoS Genet ; 7(6): e1002070, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21695235

RESUMO

The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed "mesosynteny" is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors.


Assuntos
Ascomicetos/genética , Cromossomos Fúngicos/genética , Genoma Fúngico/genética , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Rearranjo Gênico , Doenças das Plantas/microbiologia , Sintenia , Triticum/microbiologia
20.
Front Fungal Biol ; 5: 1418145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309730

RESUMO

Over a billion years of fungal evolution has enabled representatives of this kingdom to populate almost all parts of planet Earth and to adapt to some of its most uninhabitable environments including extremes of temperature, salinity, pH, water, light, or other sources of radiation. Cryomyces antarcticus is an endolithic fungus that inhabits rock outcrops in Antarctica. It survives extremes of cold, humidity and solar radiation in one of the least habitable environments on Earth. This fungus is unusual because it produces heavily melanized, meristematic growth and is thought to be haploid and asexual. Due to its growth in the most extreme environment, it has been suggested as an organism that could survive on Mars. However, the mechanisms it uses to achieve its extremophilic nature are not known. Comparative genomics can provide clues to the processes underlying biological diversity, evolution, and adaptation. This effort has been greatly facilitated by the 1000 Fungal Genomes project and the JGI MycoCosm portal where sequenced genomes have been assembled into phylogenetic and ecological groups representing different projects, lifestyles, ecologies, and evolutionary histories. Comparative genomics within and between these groups provides insights into fungal adaptations, for example to extreme environmental conditions. Here, we analyze two Cryomyces genomes in the context of additional psychrophilic fungi, as well as non-psychrophilic fungi with diverse lifestyles selected from the MycoCosm database. This analysis identifies families of genes that are expanded and contracted in Cryomyces and other psychrophiles and may explain their extremophilic lifestyle. Higher GC contents of genes and of bases in the third positions of codons may help to stabilize DNA under extreme conditions. Numerous smaller contigs in C. antarcticus suggest the presence of an alternative haplotype that could indicate the sequenced isolate is diploid or dikaryotic. These analyses provide a first step to unraveling the secrets of the extreme lifestyle of C. antarcticus.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa