RESUMO
BACKGROUND: Over the past decade, human Interleukin 33 (hIL-33) has emerged as a key contributor to the pathogenesis of numerous inflammatory diseases. Despite the existence of several commercial hIL-33 assays spanning multiple platform technologies, their ability to provide accurate hIL-33 concentration measurements and to differentiate between active (reduced) and inactive (oxidized) hIL-33 in various matrices remains uncertain. This is especially true for lower sample volumes, matrices with low hIL-33 concentrations, and matrices with elevated levels of soluble Interleukin 1 Receptor-Like 1 (sST2), an inactive form of ST2 that competes with membrane bound ST2 for hIL-33 binding. RESULTS: We tested the performance of several commercially available hIL-33 detection assays in various human matrices and found that most of these assays lacked the sensitivity to accurately detect reduced hIL-33 at biologically relevant levels (sub-to-low pg/mL), especially in the presence of human sST2 (hsST2), and/or lacked sufficient target specificity. To address this, we developed and validated a sensitive and specific enzyme-linked immunosorbent assay (ELISA) capable of detecting reduced and total hIL-33 levels even in the presence of high concentrations of sST2. By incorporating the immuno-polymerase chain reaction (iPCR) platform, we further increased the sensitivity of this assay for the reduced form of hIL-33 by ~ 52-fold. Using this hIL-33 iPCR assay, we detected hIL-33 in postmortem human vitreous humor (VH) samples from donors with age-related macular degeneration (AMD) and found significantly increased hIL-33 levels when compared to control individuals. No statistically significant difference was observed in aqueous humor (AH) from AMD donors nor in plasma and nasosorption fluid (NF) from asthma patients compared to control individuals. CONCLUSIONS: Unlike existing commercial hIL-33 assays, our hIL-33 bioassays are highly sensitive and specific and can accurately quantify hIL-33 in various human clinical matrices, including those with high levels of hsST2. Our results provide a proof of concept of the utility of these assays in clinical trials targeting the hIL-33/hST2 pathway.
Assuntos
Asma , Degeneração Macular , Bioensaio , Biomarcadores , Desenvolvimento de Medicamentos , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Interleucina-33 , Sensibilidade e EspecificidadeRESUMO
The multi-receptor tyrosine kinase inhibitor XL092 has been developed to inhibit the activity of oncogenic targets, including MET, VEGFR2, and the TAM family of kinases TYRO3, AXL and MER. Presented here is a preclinical evaluation of XL092. XL092 causes a significant decrease in tumor MET and AXL phosphorylation (P < 0.01) in murine Hs 746T xenograft models relative to vehicle, and a 96% inhibition of VEGFR2 phosphorylation in murine lungs. Dose-dependent tumor growth inhibition with XL092 was observed in various murine xenograft models, with dose-dependent tumor regression seen in the NCI-H441 model. Tumor growth inhibition was enhanced with the combination of XL092 with anti-PD-1, anti-programmed death ligand-1 (PD-L1), or anti-CTLA-4 compared with any of these agents alone in the MC38 murine syngeneic model and with anti-PD-1 in the CT26 colorectal cancer survival model. In vivo, XL092 promoted a decrease in the tumor microvasculature and significant increases of peripheral CD4+ T cells and B cells and decreases in myeloid cells versus vehicle. Significant increases in CD8+ T cells were also observed with XL092 plus anti-PD-1 or anti-PD-L1 versus vehicle. In addition, XL092 promoted M2 to M1 repolarization of macrophages in vitro and inhibited primary human macrophage efferocytosis in a dose-dependent manner. In summary, XL092 was shown to have significant antitumor and immunomodulatory activity in animal models both alone and in combination with immune checkpoint inhibitors, supporting its evaluation in clinical trials.
Assuntos
Neoplasias , Humanos , Animais , Camundongos , Proteínas de Transporte , Linfócitos T CD8-Positivos , Receptores Proteína Tirosina Quinases , Modelos Animais de Doenças , Linhagem Celular TumoralRESUMO
Variously substituted indolin-2-ones were synthesized and evaluated for activity against KDR, Flt-1, FGFR-1 and PDGFR. Extension at the 5-position of the oxindole ring with ethyl piperidine (compound 7i) proved to be the most beneficial for attaining both biochemical and cellular potencies. Further optimization of 7i to balance biochemical and cellular potencies with favorable ADME/ PK properties led to the identification of 8h, a compound with a clean CYP profile, acceptable pharmacokinetic and toxicity profiles, and robust efficacy in multiple xenograft tumor models.
Assuntos
Desenho de Fármacos , Indóis/síntese química , Piperidinas/síntese química , Inibidores de Proteínas Quinases/síntese química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Citocromo P-450 CYP3A/metabolismo , Feminino , Meia-Vida , Humanos , Indóis/farmacocinética , Indóis/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Piperidinas/farmacocinética , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Estrutura Terciária de Proteína , Ratos , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Transplante HeterólogoRESUMO
PURPOSE: Acidic organelles, including Golgi bodies and lysosomes, are known to operate as Ca(2+) storage sites in many cell types. This study demonstrates the presence of Ca(2+) stores in lysosomes of bovine corneal endothelial cells (BCECs) and examines their interaction with Ins(1,4,5)P(3)-sensitive Ca(2+) stores. METHODS: Glycyl-L-phenylalanine-beta-naphthylamide (GPN) was used to release Ca(2+) from lysosomes by inducing their selective osmotic swelling. Ca(2+) released into the cytoplasm was measured with fura-2 or fura-PE3 fluorescent dyes. Fluorescence of acridine orange (AO), which selectively sequesters into acidic organelles, was used to establish swelling of lysosomes in response to GPN. RESULTS: Exposure to GPN (100-200 microM) in cultured BCECs produced an increase in free cytosolic Ca(2+) ([Ca(2+)](i)) equivalent to approximately 79% of the peak response to uridine triphosphate (UTP), a P2Y agonist (n = 19). The endothelium of the freshly isolated cornea also produced [Ca(2+)](i) transients similar to those in cultured BCECs; however, the peak [Ca(2+)](i) increase was smaller ( approximately 43% of the peak response to UTP; n = 13). In cultured BCECs, the response to UTP was unaffected by pretreatment with GPN with extracellular calcium ([Ca(2+)](o)) at 0 and 1.2 mM (n = 10). Neither pretreatment with thapsigargin (5 microM) nor with U73122 (a phospholipase C inhibitor; 10 microM) blocked the peak GPN response (n = 6). Exposure to 20 microM monensin produced a [Ca(2+)](i) increase with [Ca(2+)](o) at 0 and 1.2 mM and also reduced the subsequent peak response to GPN (n = 6). CONCLUSIONS: GPN-sensitive lysosomal Ca(2+) stores, distinct from Ins(1,4,5)P(3)-sensitive Ca(2+) stores, are found in both cultured cells and fresh tissue. These stores are susceptible to depletion by the loss of the pH gradient across lysosomes and P2 agonists. The latter occurs through mechanisms independent of phospholipase C (PLC) activation or Ins(1,4,5)P(3). The GPN stores also induce [Ca(2+)](o) influx in response to their depletion.