Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rep Prog Phys ; 86(4)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36735956

RESUMO

The discovery of the quantum Hall effect (QHE) in 1980 marked a turning point in condensed matter physics: given appropriate experimental conditions, the Hall conductivityσxyof a two-dimensional electron system is exactly quantized. But what happens to the QHE in three dimensions (3D)? Experiments over the past 40 years showed that some of the remarkable physics of the QHE, in particular plateau-like Hall conductivitiesσxyaccompanied by minima in the longitudinal resistivityρxx, can also be found in 3D materials. However, since typicallyρxxremains finite and a quantitative relation betweenσxyand the conductance quantume2/hcould not be established, the role of quantum Hall physics in 3D remains unsettled. Following a recent series of exciting experiments, the QHE in 3D has now returned to the center stage. Here, we summarize the leap in understanding of 3D matter in magnetic fields emerging from these experiments.


Assuntos
Elétrons , Campos Magnéticos , Física
2.
Nat Mater ; 21(2): 203-209, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34811495

RESUMO

A large anomalous Nernst effect (ANE) is crucial for thermoelectric energy conversion applications because the associated unique transverse geometry facilitates module fabrication. Topological ferromagnets with large Berry curvatures show large ANEs; however, they face drawbacks such as strong magnetic disturbances and low mobility due to high magnetization. Herein, we demonstrate that YbMnBi2, a canted antiferromagnet, has a large ANE conductivity of ~10 A m-1 K-1 that surpasses large values observed in other ferromagnets (3-5 A m-1 K-1). The canted spin structure of Mn guarantees a non-zero Berry curvature, but generates only a weak magnetization three orders of magnitude lower than that of general ferromagnets. The heavy Bi with a large spin-orbit coupling enables a large ANE and low thermal conductivity, whereas its highly dispersive px/y orbitals ensure low resistivity. The high anomalous transverse thermoelectric performance and extremely small magnetization make YbMnBi2 an excellent candidate for transverse thermoelectrics.

3.
Nature ; 547(7663): 324-327, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28726829

RESUMO

The conservation laws, such as those of charge, energy and momentum, have a central role in physics. In some special cases, classical conservation laws are broken at the quantum level by quantum fluctuations, in which case the theory is said to have quantum anomalies. One of the most prominent examples is the chiral anomaly, which involves massless chiral fermions. These particles have their spin, or internal angular momentum, aligned either parallel or antiparallel with their linear momentum, labelled as left and right chirality, respectively. In three spatial dimensions, the chiral anomaly is the breakdown (as a result of externally applied parallel electric and magnetic fields) of the classical conservation law that dictates that the number of massless fermions of each chirality are separately conserved. The current that measures the difference between left- and right-handed particles is called the axial current and is not conserved at the quantum level. In addition, an underlying curved space-time provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial-gravitational anomaly, but this anomaly has yet to be confirmed experimentally. However, the presence of a mixed gauge-gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field, even in flat space-time, suggesting that such types of mixed anomaly could be experimentally probed in condensed matter systems known as Weyl semimetals. Here, using a temperature gradient, we observe experimentally a positive magneto-thermoelectric conductance in the Weyl semimetal niobium phosphide (NbP) for collinear temperature gradients and magnetic fields that vanishes in the ultra-quantum limit, when only a single Landau level is occupied. This observation is consistent with the presence of a mixed axial-gravitational anomaly, providing clear evidence for a theoretical concept that has so far eluded experimental detection.

4.
Angew Chem Int Ed Engl ; 58(37): 13107-13112, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31342613

RESUMO

Conductivity, carrier mobility, and a suitable Gibbs free energy are important criteria that determine the performance of catalysts for a hydrogen evolution reaction (HER). However, it is a challenge to combine these factors into a single compound. Herein, we discover a superior electrocatalyst for a HER in the recently identified Dirac nodal arc semimetal PtSn4 . The determined turnover frequency (TOF) for each active site of PtSn4 is 1.54 H2 s-1 at 100 mV. This sets a benchmark for HER catalysis on Pt-based noble metals and earth-abundant metal catalysts. We make use of the robust surface states of PtSn4 as their electrons can be transferred to the adsorbed hydrogen atoms in the catalytic process more efficiently. In addition, PtSn4 displays excellent chemical and electrochemical stabilities after long-term exposure in air and long-time HER stability tests.

5.
Nano Lett ; 17(4): 2596-2602, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28334529

RESUMO

Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.

6.
Nanotechnology ; 28(6): 065709, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28067207

RESUMO

Segmented magnetic nanowires are a promising route for the development of three dimensional data storage techniques. Such devices require a control of the coercive field and the coupling mechanisms between individual magnetic elements. In our study, we investigate electrodeposited nanomagnets within host templates using vibrating sample magnetometry and observe a strong dependence between nanowire length and coercive field (25 nm-5 µm) and diameter (25-45 nm). A transition from a magnetization reversal through coherent rotation to domain wall propagation is observed at an aspect ratio of approximately 2. Our results are further reinforced via micromagnetic simulations and angle dependent hysteresis loops. The found behavior is exploited to create nanowires consisting of a fixed and a free segment in a spin-valve like structure. The wires are released from the membrane and electrically contacted, displaying a giant magnetoresistance effect that is attributed to individual switching of the coupled nanomagnets. We develop a simple analytical model to describe the observed switching phenomena and to predict stable and unstable regimes in coupled nanomagnets of certain geometries.

7.
Nanotechnology ; 26(28): 285701, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26112309

RESUMO

InSb nanowire (NW) arrays were prepared by pulsed electrodeposition combined with a porous template technique. The resulting polycrystalline material has a stoichiometric composition (In:Sb = 1:1) and a high length-to-diameter ratio. Based on a combination of Fourier transform infrared spectroscopy (FTIR) analysis and field-effect measurements, the band gap, the charge carrier polarity, the carrier concentration, the mobility and the effective mass for the InSb NWs was investigated. In this preliminary work, a transition from p-type to n-type charge transport was observed when the InSb NWs were subjected to annealing.

8.
Nano Lett ; 13(9): 4080-6, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23919739

RESUMO

We report the observation of a thermoelectric power factor in InAs nanowires that exceeds that predicted by a single-band bulk model by up to an order of magnitude at temperatures below about 20 K. We attribute this enhancement effect not to the long-predicted 1D subband effects but to quantum-dot-like states that form in electrostatically nonuniform nanowires as a result of interference between propagating states and 0D resonances.

9.
Nanotechnology ; 24(49): 495402, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24231731

RESUMO

Nanowires of bismuth antimony telluride and bismuth telluride selenide (Bi15Sb29Te56 and Bi38Te55Se7) were grown by template-based pulsed electrodeposition. The composition and the crystallinity of the nanowires were determined by high-resolution transmission electron microscopy. The thermoelectric properties (Seebeck coefficient and electrical conductivity) of single p- and n-type nanowires, with diameter 80 nm and 200 nm, respectively, were determined as a function of temperature before and during heating in a helium atmosphere up to 300 K along the growth direction of the nanowires. After additional annealing in a tellurium atmosphere at 525 K, significantly enhanced transport properties are observed. Bulk-like power factors are achieved. In Bi38Te55Se7 nanowires, the Seebeck coefficients increase to -115 µV K(-1) and the thermoelectric power factors increase to 2820 µW K(-2) m(-1) at room temperature. In Bi15Sb29Te56 nanowires, Seebeck coefficients of up to S = +156 µV K(-1) and power factors of up to 1750 µW K(-2) m(-1) are obtained at room temperature.

10.
ACS Appl Electron Mater ; 5(5): 2624-2637, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37250468

RESUMO

In recent times the chiral semimetal cobalt monosilicide (CoSi) has emerged as a prototypical, nearly ideal topological conductor hosting giant, topologically protected Fermi arcs. Exotic topological quantum properties have already been identified in CoSi bulk single crystals. However, CoSi is also known for being prone to intrinsic disorder and inhomogeneities, which, despite topological protection, risk jeopardizing its topological transport features. Alternatively, topology may be stabilized by disorder, suggesting the tantalizing possibility of an amorphous variant of a topological metal, yet to be discovered. In this respect, understanding how microstructure and stoichiometry affect magnetotransport properties is of pivotal importance, particularly in case of low-dimensional CoSi thin films and devices. Here we comprehensively investigate the magnetotransport and magnetic properties of ≈25 nm Co1-xSix thin films grown on a MgO substrate with controlled film microstructure (amorphous vs textured) and chemical composition (0.40 < x < 0.60). The resistivity of Co1-xSix thin films is nearly insensitive to the film microstructure and displays a progressive evolution from metallic-like (dρxx/dT > 0) to semiconducting-like (dρxx/dT < 0) regimes of conduction upon increasing the silicon content. A variety of anomalies in the magnetotransport properties, comprising for instance signatures consistent with quantum localization and electron-electron interactions, anomalous Hall and Kondo effects, and the occurrence of magnetic exchange interactions, are attributable to the prominent influence of intrinsic structural and chemical disorder. Our systematic survey brings to attention the complexity and the challenges involved in the prospective exploitation of the topological chiral semimetal CoSi in nanoscale thin films and devices.

11.
Adv Mater ; 33(21): e2006301, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33734505

RESUMO

Topological magnets comprising 2D magnetic layers with Curie temperatures (TC ) exceeding room temperature are key for dissipationless quantum transport devices. However, the identification of a material with 2D ferromagnetic planes that exhibits an out-of-plane-magnetization remains a challenge. This study reports a ferromagnetic, topological, nodal-line, and semimetal MnAlGe composed of square-net Mn layers that are separated by nonmagnetic Al-Ge spacers. The 2D ferromagnetic Mn layers exhibit an out-of-plane magnetization below TC  ≈ 503 K. Density functional calculations demonstrate that 2D arrays of Mn atoms control the electrical, magnetic, and therefore topological properties in MnAlGe. The unique 2D distribution of the Berry curvature resembles the 2D Fermi surface of the bands that form the topological nodal line near the Fermi energy. A large anomalous Hall conductivity of ≈700 S cm-1 is obtained at 2 K and related to this nodal-line-induced 2D Berry curvature distribution. The high transition temperature, large anisotropic out-of-plane magnetism, and natural heterostructure-type atomic arrangements consisting of magnetic Mn and nonmagnetic Al/Ge elements render nodal-line MnAlGe one of the few, unique, and layered topological ferromagnets that have ever been observed.

12.
Research (Wash D C) ; 2020: 4643507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318686

RESUMO

Highly conductive topological semimetals with exotic electronic structures offer fertile ground for the investigation of the electrical and thermal transport behavior of quasiparticles. Here, we find that the layer-structured Dirac semimetal PtSn4 exhibits a largely suppressed thermal conductivity under a magnetic field. At low temperatures, a dramatic decrease in the thermal conductivity of PtSn4 by more than two orders of magnitude is obtained at 9 T. Moreover, PtSn4 shows both strong longitudinal and transverse thermoelectric responses under a magnetic field. Large power factor and Nernst power factor of approximately 80-100 µW·cm-1·K-2 are obtained around 15 K in various magnetic fields. As a result, the thermoelectric figure of merit zT is strongly enhanced by more than 30 times, compared to that without a magnetic field. This work provides a paradigm for the decoupling of the electron and hole transport behavior of highly conductive topological semimetals and is helpful for developing topological semimetals for thermoelectric energy conversion.

13.
Adv Mater ; 31(25): e1806622, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31044469

RESUMO

The discovery of magnetic topological semimetals has recently attracted significant attention in the field of topology and thermoelectrics. In a thermoelectric device based on the Nernst geometry, an external magnet is required as an integral part. Reported is a zero-field Nernst effect in a newly discovered hard-ferromagnetic kagome-lattice Weyl-semimetal Co3 Sn2 S2 . A maximum Nernst thermopower of ≈3 µV K-1 at 80 K in zero field is achieved in this magnetic Weyl-semimetal. The results demonstrate the possibility of application of topological hard magnetic semimetals for low-power thermoelectric devices based on the Nernst effect and are thus valuable for the comprehensive understanding of transport properties in this class of materials.

14.
Sci Adv ; 5(8): eaaw9867, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31453332

RESUMO

The band inversion in topological phase matters bring exotic physical properties such as the topologically protected surface states (TSS). They strongly influence the surface electronic structures of the materials and could serve as a good platform to gain insight into the surface reactions. Here we synthesized high-quality bulk single crystals of Co3Sn2S2 that naturally hosts the band structure of a topological semimetal. This guarantees the existence of robust TSS from the Co atoms. Co3Sn2S2 crystals expose their Kagome lattice that constructed by Co atoms and have high electrical conductivity. They serves as catalytic centers for oxygen evolution process (OER), making bonding and electron transfer more efficient due to the partially filled orbital. The bulk single crystal exhibits outstanding OER catalytic performance, although the surface area is much smaller than that of Co-based nanostructured catalysts. Our findings emphasize the importance of tailoring TSS for the rational design of high-activity electrocatalysts.

15.
Nat Commun ; 10(1): 2475, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171775

RESUMO

Weyl and Dirac fermions have created much attention in condensed matter physics and materials science. Recently, several additional distinct types of fermions have been predicted. Here, we report ultra-high electrical conductivity in MoP at low temperature, which has recently been established as a triple point fermion material. We show that the electrical resistivity is 6 nΩ cm at 2 K with a large mean free path of 11 microns. de Haas-van Alphen oscillations reveal spin splitting of the Fermi surfaces. In contrast to noble metals with similar conductivity and number of carriers, the magnetoresistance in MoP does not saturate up to 9 T at 2 K. Interestingly, the momentum relaxing time of the electrons is found to be more than 15 times larger than the quantum coherence time. This difference between the scattering scales shows that momentum conserving scattering dominates in MoP at low temperatures.

16.
ACS Nano ; 12(3): 2169-2175, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29365252

RESUMO

Additional functionalities on semiconductor microchips are progressively important in order to keep up with the ever-increasing demand for more powerful computational systems. Monolithic III-V integration on Si promises to merge mature Si CMOS processing technology with III-V semiconductors possessing superior material properties, e. g., in terms of carrier mobility or band structure (direct band gap). In particular, Si photonics would strongly benefit from an integration scheme for active III-V optoelectronic devices in order to enable low-cost and power-efficient electronic-photonic integrated circuits. We report on room-temperature lasing from AlGaAs/GaAs microdisk cavities monolithically integrated on Si(001) using a selective epitaxial growth technique called template-assisted selective epitaxy. The grown gain material possesses high optical quality without indication of threading dislocations, antiphase boundaries, or twin defects. The devices exhibit single-mode lasing at T < 250 K and lasing thresholds between 2 and 18 pJ/pulse depending on the cavity size (1-3 µm in diameter).

17.
Sci Rep ; 7: 43394, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262790

RESUMO

NbP is a recently realized Weyl semimetal (WSM), hosting Weyl points through which conduction and valence bands cross linearly in the bulk and exotic Fermi arcs appear. The most intriguing transport phenomenon of a WSM is the chiral anomaly-induced negative magnetoresistance (NMR) in parallel electric and magnetic fields. In intrinsic NbP the Weyl points lie far from the Fermi energy, making chiral magneto-transport elusive. Here, we use Ga-doping to relocate the Fermi energy in NbP sufficiently close to the W2 Weyl points, for which the different Fermi surfaces are verified by resultant quantum oscillations. Consequently, we observe a NMR for parallel electric and magnetic fields, which is considered as a signature of the chiral anomaly in condensed-matter physics. The NMR survives up to room temperature, making NbP a versatile material platform for the development of Weyltronic applications.

18.
ACS Nano ; 11(3): 2554-2560, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28225591

RESUMO

GaSb nanostructures integrated on Si substrates are of high interest for p-type transistors and mid-IR photodetectors. Here, we investigate the metalorganic chemical vapor deposition and properties of GaSb nanostructures monolithically integrated onto silicon-on-insulator wafers using template-assisted selective epitaxy. A high degree of morphological control allows for GaSb nanostructures with critical dimensions down to 20 nm. Detailed investigation of growth parameters reveals that the GaSb growth rate is governed by the desorption processes of an Sb surface layer and, in turn, is insensitive to changes in material transport efficiency. The GaSb crystal structure is typically zinc-blende with a low density of rotational twin defects, and even occasional twin-free structures are observed. Hall/van der Pauw measurements are conducted on 20 nm-thick GaSb nanostructures, revealing high hole mobility of 760 cm2/(V s), which matches literature values for high-quality bulk GaSb crystals. Finally, we demonstrate a process that enables cointegration of GaSb and InAs nanostructures in close vicinity on Si, a preferred material combination ideally suited for high-performance complementary III-V metal-oxide-semiconductor technology.

19.
Sci Rep ; 6: 19014, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26751282

RESUMO

Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.

20.
Nanoscale ; 8(28): 13552-7, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27362294

RESUMO

We systematically investigated the role of topological surface states on thermoelectric transport by varying the surface-to-volume ratio (s/v) of Bi2Se3 nanowires. The thermoelectric coefficients of Bi2Se3 nanowires were significantly influenced by the topological surface states with increasing the s/v. The Seebeck coefficient of Bi2Se3 nanowires decreased with increasing the s/v, while the electrical conductivity increased with increasing the s/v. This implies that the influence of metallic surface states become dominant in thermoelectric transport in thin nanowires, and the s/v is a key parameter which determines the total thermoelectric properties. Our measurements were corroborated by using a two-channel Boltzmann transport model.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa