Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 10033-10045, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571224

RESUMO

Fiber optic interferometry combined with recognizing elements has attracted intensive attention for the development of different biosensors due to its superior characteristic features. However, the immobilization of sensing elements alone is not capable of low-concentration detection due to weak interaction with the evanescent field of the sensing transducer. The utilization of different 2D materials with high absorption potential and specific surface area can enhance the intensity of the evanescent field and hence the sensitivity of the sensor. Here, a biosensor has been fabricated using an inline hetero fiber structure of photonic crystal fiber (PCF) and single-mode fiber (SMF) functionalized with a nanocomposite of molybodenum di-sulfide (MoS2) and molecular imprinting polymer (MIP) to detect trace levels of bovine serum albumin (BSA). The sensor showed a wide dynamic detection range with a high sensitivity of 2.34 × 107 pm/µg L-1. It shows working potential over a wide pH range with a subfemtomolar detection limit. The compact size, easy fabrication, stable structure, long detection range, and high sensitivity of this sensor would open a new path for the development of different biosensors for online and remote sensing applications.


Assuntos
Impressão Molecular , Nanocompostos , Polímeros/química , Molibdênio , Tecnologia de Fibra Óptica
2.
Opt Lett ; 48(20): 5391-5394, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831875

RESUMO

Pollution monitoring in waterways and oceans is often performed in a laboratory on samples previously taken from the environment. The integration of molecular imprinting polymer nanoparticles (MIP-NPs) with a novel, to the best of our knowledge, fiber optic interferometer allowed a fast and selective detection of water pollutant 2,4-Dichlorophenol (2,4-DCP). The proposed sensor with an increased surface-to-volume ratio of MIP-NPs provided an enhanced sensitivity of 17.1 nm/µM and a wide operating range of 0.1-100 µM. It showed a highly repeatable performance and potential to measure up to nM concentrations. This integrated technique is suitable for the development of compact, stable, precise, and sensitive biosensors for online monitoring and remote chemical sensing applications.

3.
ACS Omega ; 9(3): 3037-3069, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284054

RESUMO

Over the last 20 years, optical fiber-based devices have been exploited extensively in the field of biochemical sensing, with applications in many specific areas such as the food processing industry, environmental monitoring, health diagnosis, bioengineering, disease diagnosis, and the drug industry due to their compact, label-free, and highly sensitive detection. The selective and accurate detection of biochemicals is an essential part of biosensing devices, which is to be done through effective functionalization of highly specific recognition agents, such as enzymes, DNA, receptors, etc., over the transducing surface. Among many optical fiber-based sensing technologies, optical fiber interferometry-based biosensors are one of the broadly used methods with the advantages of biocompatibility, compact size, high sensitivity, high-resolution sensing, lower detection limits, operating wavelength tunability, etc. This Review provides a comprehensive review of the fundamentals as well as the current advances in developing optical fiber interferometry-based biochemical sensors. In the beginning, a generic biosensor and its several components are introduced, followed by the fundamentals and state-of-art technology behind developing a variety of interferometry-based fiber optic sensors. These include the Mach-Zehnder interferometer, the Michelson interferometer, the Fabry-Perot interferometer, the Sagnac interferometer, and biolayer interferometry (BLI). Further, several technical reports are comprehensively reviewed and compared in a tabulated form for better comparison along with their advantages and disadvantages. Further, the limitations and possible solutions for these sensors are discussed to transform these in-lab devices into commercial industry applications. At the end, in conclusion, comments on the prospects of field development toward the commercialization of sensor technology are also provided. The Review targets a broad range of audiences including beginners and also motivates the experts helping to solve the real issues for developing an industry-oriented sensing device.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa