Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(19): e2217887120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126704

RESUMO

Treatment of HIV-1ADA-infected CD34+ NSG-humanized mice with long-acting ester prodrugs of cabotegravir, lamivudine, and abacavir in combination with native rilpivirine was followed by dual CRISPR-Cas9 C-C chemokine receptor type five (CCR5) and HIV-1 proviral DNA gene editing. This led to sequential viral suppression, restoration of absolute human CD4+ T cell numbers, then elimination of replication-competent virus in 58% of infected mice. Dual CRISPR therapies enabled the excision of integrated proviral DNA in infected human cells contained within live infected animals. Highly sensitive nucleic acid nested and droplet digital PCR, RNAscope, and viral outgrowth assays affirmed viral elimination. HIV-1 was not detected in the blood, spleen, lung, kidney, liver, gut, bone marrow, and brain of virus-free animals. Progeny virus from adoptively transferred and CRISPR-treated virus-free mice was neither detected nor recovered. Residual HIV-1 DNA fragments were easily seen in untreated and viral-rebounded animals. No evidence of off-target toxicities was recorded in any of the treated animals. Importantly, the dual CRISPR therapy demonstrated statistically significant improvements in HIV-1 cure percentages compared to single treatments. Taken together, these observations underscore a pivotal role of combinatorial CRISPR gene editing in achieving the elimination of HIV-1 infection.


Assuntos
Infecções por HIV , Soropositividade para HIV , Camundongos , Animais , Humanos , Antirretrovirais/uso terapêutico , Edição de Genes , Provírus/genética , Receptores CCR5
2.
Proc Natl Acad Sci U S A ; 117(32): 19446-19454, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723829

RESUMO

Antimicrobial peptides are important candidates for developing new classes of antibiotics because of their potency against antibiotic-resistant pathogens. Current research focuses on topical applications and it is unclear how to design peptides with systemic efficacy. To address this problem, we designed two potent peptides by combining database-guided discovery with structure-based design. When bound to membranes, these two short peptides with an identical amino acid composition can adopt two distinct amphipathic structures: A classic horizontal helix (horine) and a novel vertical spiral structure (verine). Their horizontal and vertical orientations on membranes were determined by solid-state 15N NMR data. While horine was potent primarily against gram-positive pathogens, verine showed broad-spectrum antimicrobial activity. Both peptides protected greater than 80% mice from infection-caused deaths. Moreover, horine and verine also displayed significant systemic efficacy in different murine models comparable to conventional antibiotics. In addition, they could eliminate resistant pathogens and preformed biofilms. Significantly, the peptides showed no nephrotoxicity to mice after intraperitoneal or intravenous administration for 1 wk. Our study underscores the significance of horine and verine in fighting drug-resistant pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Membrana Celular/metabolismo , Bases de Dados de Proteínas , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Resultado do Tratamento
3.
Nat Mater ; 20(5): 593-605, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33589798

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every corner of the globe, causing societal instability. The resultant coronavirus disease 2019 (COVID-19) leads to fever, sore throat, cough, chest and muscle pain, dyspnoea, confusion, anosmia, ageusia and headache. These can progress to life-threatening respiratory insufficiency, also affecting the heart, kidney, liver and nervous systems. The diagnosis of SARS-CoV-2 infection is often confused with that of influenza and seasonal upper respiratory tract viral infections. Due to available treatment strategies and required containments, rapid diagnosis is mandated. This Review brings clarity to the rapidly growing body of available and in-development diagnostic tests, including nanomaterial-based tools. It serves as a resource guide for scientists, physicians, students and the public at large.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Anticorpos Antivirais/sangue , Antígenos Virais/análise , Encéfalo/diagnóstico por imagem , COVID-19/diagnóstico por imagem , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/métodos , Teste Sorológico para COVID-19/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Pulmão/diagnóstico por imagem , Metagenômica/métodos , Nanoestruturas , Nanotecnologia , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Carga Viral , Eliminação de Partículas Virais
4.
J Immunol ; 205(10): 2726-2741, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33037140

RESUMO

HIV has become a chronic disease despite the effective use of antiretroviral therapy (ART). However, the mechanisms of tissue colonization, viral evolution, generation of viral reservoirs, and compartmentalization are still a matter of debate due to the challenges involved in examining early events of infection at the cellular and molecular level. Thus, there is still an urgent need to explore these areas to develop effective HIV cure strategies. In this study, we describe the early events of tissue colonization and compartmentalization as well as the role of tunneling nanotube-like structures during viral spread in the presence and absence of effective antiretroviral treatment. To examine these mechanisms, NOD/SCID IL-2 RG-/- humanized mice were either directly infected with HIVADA or with low numbers of HIVADA-infected leukocytes to limit tissue colonization in the presence and absence of TAK779, an effective CCR5 blocker of HIV entry. We identify that viral seeding in tissues occurs early in a tissue- and cell type-specific manner (24-72 h). Reduction in systemic HIV replication by TAK779 treatment did not affect tissue seeding or spreading, despite reduced systemic viral replication. Tissue-associated HIV-infected cells had different properties than cells in the circulation because the virus continues to spread in tissues in a tunneling nanotube-like structure-dependent manner, despite ART. Thus, understanding these mechanisms can provide new approaches to enhance the efficacy of existing ART and HIV infection cure strategies.


Assuntos
Antirretrovirais/administração & dosagem , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , HIV-1/patogenicidade , Amidas/administração & dosagem , Animais , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/isolamento & purificação , Transplante de Células-Tronco Hematopoéticas , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos , Camundongos Knockout , Compostos de Amônio Quaternário/administração & dosagem , Quimeras de Transplante , Carga Viral , Integração Viral/efeitos dos fármacos , Integração Viral/imunologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia
5.
Brain ; 144(1): 288-309, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33246331

RESUMO

Extracellular vesicles are highly transmissible and play critical roles in the propagation of tau pathology, although the underlying mechanism remains elusive. Here, for the first time, we comprehensively characterized the physicochemical structure and pathogenic function of human brain-derived extracellular vesicles isolated from Alzheimer's disease, prodromal Alzheimer's disease, and non-demented control cases. Alzheimer's disease extracellular vesicles were significantly enriched in epitope-specific tau oligomers in comparison to prodromal Alzheimer's disease or control extracellular vesicles as determined by dot blot and atomic force microscopy. Alzheimer's disease extracellular vesicles were more efficiently internalized by murine cortical neurons, as well as more efficient in transferring and misfolding tau, than prodromal Alzheimer's disease and control extracellular vesicles in vitro. Strikingly, the inoculation of Alzheimer's disease or prodromal Alzheimer's disease extracellular vesicles containing only 300 pg of tau into the outer molecular layer of the dentate gyrus of 18-month-old C57BL/6 mice resulted in the accumulation of abnormally phosphorylated tau throughout the hippocampus by 4.5 months, whereas inoculation of an equal amount of tau from control extracellular vesicles, isolated tau oligomers, or fibrils from the same Alzheimer's disease donor showed little tau pathology. Furthermore, Alzheimer's disease extracellular vesicles induced misfolding of endogenous tau in both oligomeric and sarkosyl-insoluble forms in the hippocampal region. Unexpectedly, phosphorylated tau was primarily accumulated in glutamic acid decarboxylase 67 (GAD67) GABAergic interneurons and, to a lesser extent, glutamate receptor 2/3-positive excitatory mossy cells, showing preferential extracellular vesicle-mediated GABAergic interneuronal tau propagation. Whole-cell patch clamp recordings of CA1 pyramidal cells showed significant reduction in the amplitude of spontaneous inhibitory post-synaptic currents. This was accompanied by reductions in c-fos+ GAD67+ neurons and GAD67+ neuronal puncta surrounding pyramidal neurons in the CA1 region, confirming reduced GABAergic transmission in this region. Our study posits a novel mechanism for the spread of tau in hippocampal GABAergic interneurons via brain-derived extracellular vesicles and their subsequent neuronal dysfunction.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Vesículas Extracelulares/metabolismo , Interneurônios/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Vesículas Extracelulares/patologia , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Interneurônios/patologia , Masculino , Camundongos Endogâmicos C57BL , Células Piramidais/metabolismo , Células Piramidais/patologia
6.
Retrovirology ; 18(1): 13, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090462

RESUMO

Humanized mice model human disease and as such are used commonly for research studies of infectious, degenerative and cancer disorders. Recent models also reflect hematopoiesis, natural immunity, neurobiology, and molecular pathways that influence disease pathobiology. A spectrum of immunodeficient mouse strains permit long-lived human progenitor cell engraftments. The presence of both innate and adaptive immunity enables high levels of human hematolymphoid reconstitution with cell susceptibility to a broad range of microbial infections. These mice also facilitate investigations of human pathobiology, natural disease processes and therapeutic efficacy in a broad spectrum of human disorders. However, a bridge between humans and mice requires a complete understanding of pathogen dose, co-morbidities, disease progression, environment, and genetics which can be mirrored in these mice. These must be considered for understanding of microbial susceptibility, prevention, and disease progression. With known common limitations for access to human tissues, evaluation of metabolic and physiological changes and limitations in large animal numbers, studies in mice prove important in planning human clinical trials. To these ends, this review serves to outline how humanized mice can be used in viral and pharmacologic research emphasizing both current and future studies of viral and neurodegenerative diseases. In all, humanized mouse provides cost-effective, high throughput studies of infection or degeneration in natural pathogen host cells, and the ability to test transmission and eradication of disease.


Assuntos
Modelos Animais de Doenças , Imunidade Inata , Camundongos SCID , Doenças Neurodegenerativas/imunologia , Animais , HIV-1/imunologia , Camundongos
7.
Alzheimers Dement ; 16(6): 896-907, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301581

RESUMO

INTRODUCTION: Extracellular vesicles (EVs) from human Alzheimer's disease (AD) biospecimens contain amyloid beta (Aß) peptide and tau. While AD EVs are known to affect brain disease pathobiology, their biochemical and molecular characterizations remain ill defined. METHODS: EVs were isolated from the cortical gray matter of 20 AD and 18 control brains. Tau and Aß levels were measured by immunoassay. Differentially expressed EV proteins were assessed by quantitative proteomics and machine learning. RESULTS: Levels of pS396 tau and Aß1-42 were significantly elevated in AD EVs. High levels of neuron- and glia-specific factors are detected in control and AD EVs, respectively. Machine learning identified ANXA5, VGF, GPM6A, and ACTZ in AD EV compared to controls. They distinguished AD EVs from controls in the test sets with 88% accuracy. DISCUSSION: In addition to Aß and tau, ANXA5, VGF, GPM6A, and ACTZ are new signature proteins in AD EVs.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Proteoma , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Feminino , Humanos , Aprendizado de Máquina , Masculino , Fosforilação , Proteômica , Proteínas tau/metabolismo
8.
Semin Cancer Biol ; 52(Pt 2): 53-65, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29196189

RESUMO

Neuroblastoma is the most common pediatric solid tumor of neural crest origin. The current treatment options for neuroblastoma produce severe side effects. Programmed death-ligand 1 (PD-L1), chronic inflammation, and non-coding RNAs are known to play a significant role in the pathogenesis of neuroblastoma. Cancer cells and the surrounding cells in the tumor microenvironment express PD-L1. Programmed death-1 (PD-1) is a co-receptor expressed predominantly by T cells. The binding of PD-1 to its ligands, PD-L1 or PD-L2, is vital for the physiologic regulation of the immune system. Chronic inflammation is involved in the recruitment of leukocytes, production of cytokines and chemokines that in turn, lead to survival, metastasis, and angiogenesis in neuroblastoma tumors. The miRNAs and long non-coding (lnc) RNAs have emerged as a novel class of non-coding RNAs that can regulate neuroblastoma associated cell-signaling pathways. The dysregulation of PD-1/PD-L1, inflammatory pathways, lncRNAs, and miRNAs have been reported in clinical and experimental samples of neuroblastoma. These signaling molecules are currently being evaluated for their potential as the biomarker and therapeutic targets in the management of neuroblastoma. A monoclonal antibody called dinutuximab (Unituxin) that attaches to a carbohydrate molecule GD2, on the surface of many neuroblastoma cells, is being used as an immunotherapy drug for neuroblastoma treatment. Atezolizumab (Tecentriq), an engineered monoclonal antibody against PD-L1, are currently in clinical trial for neuroblastoma patients. The lncRNA/miRNA-based therapeutics is being developed to deliver tumor suppressor lncRNAs/miRNAs or silencing of oncogenic lncRNAs/miRNAs. The focus of this review is to discuss the current knowledge on the immune checkpoint molecules, PD-1/PD-L1 signaling, inflammation, and non-coding RNAs in neuroblastoma.


Assuntos
Antígeno B7-H1/genética , Inflamação/genética , Inflamação/imunologia , Neuroblastoma/genética , Neuroblastoma/imunologia , RNA não Traduzido/genética , Animais , Humanos , Oncologia/métodos
9.
BMC Immunol ; 20(1): 2, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616506

RESUMO

BACKGROUND: The use of immunodeficient mice transplanted with human hematopoietic stem cells is an accepted approach to study human-specific infectious diseases such as HIV-1 and to investigate multiple aspects of human immune system development. However, mouse and human are different in sialylation patterns of proteins due to evolutionary mutations of the CMP-N-acetylneuraminic acid hydroxylase (CMAH) gene that prevent formation of N-glycolylneuraminic acid from N-acetylneuraminic acid. How changes in the mouse glycoproteins' chemistry affect phenotype and function of transplanted human hematopoietic stem cells and mature human immune cells in the course of HIV-1 infection are not known. RESULTS: We mutated mouse CMAH in the NOD/scid-IL2Rγc-/- (NSG) mouse strain, which is widely used for the transplantation of human cells, using the CRISPR/Cas9 system. The new strain provides a better environment for human immune cells. Transplantation of human hematopoietic stem cells leads to broad B cells repertoire, higher sensitivity to HIV-1 infection, and enhanced proliferation of transplanted peripheral blood lymphocytes. The mice showed no effect on the clearance of human immunoglobulins and enhanced transduction efficiency of recombinant adeno-associated viral vector rAAV2/DJ8. CONCLUSION: NSG-cmah-/- mice expand the mouse models suitable for human cells transplantation, and this new model has advantages in generating a human B cell repertoire. This strain is suitable to study different aspects of the human immune system development, provide advantages in patient-derived tissue and cell transplantation, and could allow studies of viral vectors and infectious agents that are sensitive to human-like sialylation of mouse glycoproteins.


Assuntos
Glicoproteínas/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1 , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/virologia , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Loci Gênicos , Infecções por HIV/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/virologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Knockout , Fenótipo
10.
J Pharmacol Exp Ther ; 365(2): 272-280, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476044

RESUMO

Antiretroviral drug (ARV) metabolism is linked largely to hepatic cytochrome P450 activity. One ARV drug class known to be metabolized by intestinal and hepatic CYP3A are the protease inhibitors (PIs). Plasma drug concentrations are boosted by CYP3A inhibitors such as cobisistat and ritonavir (RTV). Studies of such drug-drug interactions are limited since the enzyme pathways are human specific. While immune-deficient mice reconstituted with human cells are an excellent model to study ARVs during human immunodeficiency virus type 1 (HIV-1) infection, they cannot reflect human drug metabolism. Thus, we created a mouse strain with the human pregnane X receptor, constitutive androstane receptor, and CYP3A4/7 genes on a NOD.Cg-Prkdcscid Il2rgtm1Sug /JicTac background (hCYP3A-NOG) and used them to evaluate the impact of human CYP3A metabolism on ARV pharmacokinetics. In proof-of-concept studies we used nanoformulated atazanavir (nanoATV) with or without RTV. NOG and hCYP3A-NOG mice were treated weekly with 50 mg/kg nanoATV alone or boosted with nanoformulated ritonavir (nanoATV/r). Plasma was collected weekly and liver was collected at 28 days post-treatment. Plasma and liver atazanavir (ATV) concentrations in nanoATV/r-treated hCYP3A-NOG mice were 2- to 4-fold higher than in replicate NOG mice. RTV enhanced plasma and liver ATV concentrations 3-fold in hCYP3A-NOG mice and 1.7-fold in NOG mice. The results indicate that human CYP3A-mediated drug metabolism is reduced compared with mouse and that RTV differentially affects human gene activity. These differences can affect responses to PIs in humanized mouse models of HIV-1 infection. Importantly, hCYP3A-NOG mice reconstituted with human immune cells can be used for bench-to-bedside translation.


Assuntos
Fármacos Anti-HIV/farmacologia , Citocromo P-450 CYP3A/genética , Receptor de Pregnano X/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Fármacos Anti-HIV/farmacocinética , Receptor Constitutivo de Androstano , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Distribuição Tecidual , Pesquisa Translacional Biomédica
11.
Retrovirology ; 14(1): 17, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28279181

RESUMO

BACKGROUND: Despite improved clinical outcomes seen following antiretroviral therapy (ART), resting CD4+ T cells continue to harbor latent human immunodeficiency virus type one (HIV-1). However, such cells are not likely the solitary viral reservoir and as such defining where and how others harbor virus is imperative for eradication measures. To such ends, we used HIV-1ADA-infected NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ mice reconstituted with a human immune system to explore two long-acting ART regimens investigating their abilities to affect viral cell infection and latency. At 6 weeks of infection animals were divided into four groups. One received long-acting (LA) cabotegravir (CAB) and rilpivirine (RVP) (2ART), a second received LA CAB, lamivudine, abacavir and RVP (4ART), a third were left untreated and a fourth served as an uninfected control. After 4 weeks of LA ART treatment, blood, spleen and bone marrow (BM) cells were collected then phenotypically characterized. CD4+ T cell subsets, macrophages and hematopoietic progenitor cells were analyzed for HIV-1 nucleic acids by droplet digital PCR. RESULTS: Plasma viral loads were reduced by two log10 or to undetectable levels in the 2 and 4ART regimens, respectively. Numbers and distributions of CD4+ memory and regulatory T cells, macrophages and hematopoietic progenitor cells were significantly altered by HIV-1 infection and by both ART regimens. ART reduced viral DNA and RNA in all cell and tissue compartments. While memory cells were the dominant T cell reservoir, integrated HIV-1 DNA was also detected in the BM and spleen macrophages in both regimen-treated mice. CONCLUSION: Despite vigorous ART regimens, HIV-1 DNA and RNA were easily detected in mature macrophages supporting their potential role as an infectious viral reservoir.


Assuntos
Antirretrovirais/administração & dosagem , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , Macrófagos/virologia , Animais , DNA Viral/análise , DNA Viral/genética , Reservatórios de Doenças , HIV-1/fisiologia , Humanos , Camundongos SCID , Plasma/virologia , Reação em Cadeia da Polimerase , Provírus/genética , RNA Viral/análise , Resultado do Tratamento , Carga Viral , Latência Viral
12.
Nanomedicine ; 12(1): 109-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26472049

RESUMO

During studies to extend the half-life of crystalline nanoformulated antiretroviral therapy (nanoART) the mixed lineage kinase-3 inhibitor URMC-099, developed as an adjunctive neuroprotective agent was shown to facilitate antiviral responses. Long-acting ritonavir-boosted atazanavir (nanoATV/r) nanoformulations co-administered with URMC-099 reduced viral load and the numbers of HIV-1 infected CD4+ T-cells in lymphoid tissues more than either drug alone in infected humanized NOD/SCID/IL2Rγc-/- mice. The drug effects were associated with sustained ART depots. Proteomics analyses demonstrated that the antiretroviral responses were linked to affected phagolysosomal storage pathways leading to sequestration of nanoATV/r in Rab-associated recycling and late endosomes; sites associated with viral maturation. URMC-099 administered with nanoATV induced a dose-dependent reduction in HIV-1p24 and reverse transcriptase activity. This drug combination offers a unique chemical marriage for cell-based viral clearance. From the Clinical Editor: Although successful in combating HIV-1 infection, the next improvement in antiretroviral therapy (nanoART) would be to devise long acting therapy, such as intra-cellular depots. In this report, the authors described the use of nanoformulated antiretroviral therapy given together with the mixed lineage kinase-3 inhibitor URMC-099, and showed that this combination not only prolonged drug half-life, but also had better efficacy. The findings are hoped to be translated into the clinical setting in the future.


Assuntos
Sulfato de Atazanavir/administração & dosagem , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Nanocápsulas/química , Piridinas/administração & dosagem , Pirróis/administração & dosagem , Animais , Antirretrovirais/administração & dosagem , Terapia Antirretroviral de Alta Atividade/métodos , Quimioterapia Combinada/métodos , Infecções por HIV/diagnóstico , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Camundongos , Camundongos SCID , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Inibidores de Proteínas Quinases/administração & dosagem , Resultado do Tratamento , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
13.
Am J Pathol ; 184(1): 101-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24200850

RESUMO

Human-specific HIV-1 and hepatitis co-infections significantly affect patient management and call for new therapeutic options. Small xenotransplantation models with human hepatocytes and hematolymphoid tissue should facilitate antiviral/antiretroviral drug trials. However, experience with mouse strains tested for dual reconstitution is limited, with technical difficulties such as risky manipulations with newborns and high mortality rates due to metabolic abnormalities. The best animal strains for hepatocyte transplantation are not optimal for human hematopoietic stem cell (HSC) engraftment, and vice versa. We evaluated a new strain of highly immunodeficient nonobese diabetic/Shi-scid (severe combined immunodeficiency)/IL-2Rγc(null) (NOG) mice that carry two copies of the mouse albumin promoter-driven urokinase-type plasminogen activator transgene for dual reconstitution with human liver and immune cells. Three approaches for dual reconstitution were evaluated: i) freshly isolated fetal hepatoblasts were injected intrasplenically, followed by transplantation of cryopreserved HSCs obtained from the same tissue samples 1 month later after treosulfan conditioning; ii) treosulfan conditioning is followed by intrasplenic simultaneous transplantation of fetal hepatoblasts and HSCs; and iii) transplantation of mature hepatocytes is followed by mismatched HSCs. The long-term dual reconstitution was achieved on urokinase-type plasminogen activator-NOG mice with mature hepatocytes (not fetal hepatoblasts) and HSCs. Even major histocompatibility complex mismatched transplantation was sustained without any evidence of hepatocyte rejection by the human immune system.


Assuntos
Coinfecção , Modelos Animais de Doenças , Transplante de Células-Tronco Hematopoéticas/métodos , Hepatócitos/transplante , Animais , Antineoplásicos Alquilantes/farmacologia , Bussulfano/análogos & derivados , Bussulfano/farmacologia , Infecções por HIV , Hepatite C , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Transgenes , Ativador de Plasminogênio Tipo Uroquinase/genética
14.
Nanomedicine ; 10(1): 177-85, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23845925

RESUMO

Antiviral therapy using nucleoside reverse transcriptase inhibitors (NRTIs) is neurotoxic and has low efficiency in eradication of HIV-1 harbored in central nervous system (CNS). Previously, we reported that active 5'-triphosphates of NRTIs encapsulated in cationic nanogels (nano-NRTIs) suppress HIV-1 activity more efficiently than NRTIs and exhibit reduced mitochondrial toxicity [Vinogradov SV, Poluektova LY, Makarov E, Gerson T, Senanayake MT. Nano-NRTIs: efficient inhibitors of HIV type-1 in macrophages with a reduced mitochondrial toxicity. Antivir Chem Chemother. 2010; 21:1-14. Makarov E, Gerson T, Senanayake T, Poluektova LY, Vinogradov. Efficient suppression of Human Immunodeficiency Virus in Macrophages by Nano-NRTIs. Antiviral Res. 2010; 86(1):A38-9]. Here, we demonstrated low neurotoxicity and excellent antiviral activity of nano-NRTIs decorated with the peptide (AP) binding brain-specific apolipoprotein E receptor. Nano-NRTIs induced lower levels of apoptosis and formation of reactive oxygen species, a major cause of neuron death, than free NRTIs. Optimization of size, surface decoration with AP significantly increased brain accumulation of nano-NRTIs. The efficient CNS delivery of nano-NRTIs resulted in up to 10-fold suppression of retroviral activity and reduced virus-associated inflammation in humanized mouse model of HIV-1 infection in the brain. Our data provide proof of the advanced efficacy of nano-NRTIs as safer alternative of current antiviral drugs. FROM THE CLINICAL EDITOR: This team of investigators demonstrated low neurotoxicity and excellent anti-HIV activity of nano-nucleoside reverse transcriptase inhibitors decorated with the peptide (AP) binding brain-specific apolipoprotein E receptor, providing proof of enhanced efficacy and a safer alternative compared with current antiviral drugs.


Assuntos
Antivirais/administração & dosagem , Infecções por HIV/tratamento farmacológico , Polietilenoglicóis/administração & dosagem , Polietilenoimina/administração & dosagem , Inibidores da Transcriptase Reversa/administração & dosagem , Animais , Antivirais/efeitos adversos , Antivirais/química , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Infecções por HIV/virologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Humanos , Camundongos , Camundongos Transgênicos , Nanogéis , Polietilenoglicóis/química , Polietilenoimina/química , Espécies Reativas de Oxigênio/metabolismo , Inibidores da Transcriptase Reversa/efeitos adversos , Inibidores da Transcriptase Reversa/química
15.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38399364

RESUMO

Disordered immunity, aging, human immunodeficiency virus type one (HIV-1) infection, and responses to antiretroviral therapy are linked. However, how each factor is linked with the other(s) remains incompletely understood. It has been reported that accelerated aging, advanced HIV-1 infection, inflammation, and host genetic factors are associated with host cellular, mitochondrial, and metabolic alterations. However, the underlying mechanism remains elusive. With these questions in mind, we used chronically HIV-1-infected CD34-NSG humanized mice (hu-mice) to model older people living with HIV and uncover associations between HIV-1 infection and aging. Adult humanized mice were infected with HIV-1 at the age of 20 weeks and maintained for another 40 weeks before sacrifice. Animal brains were collected and subjected to transcriptomics, qPCR, and immunofluorescence assays to uncover immune disease-based biomarkers. CD4+ T cell decline was associated with viral level and age. Upregulated C1QA, CD163, and CXCL16 and downregulated LMNA and CLU were identified as age-associated genes tied to HIV-1 infection. Ingenuity pathway analysis affirmed links to innate immune activation, pyroptosis signaling, neuroinflammation, mitochondrial dysfunction, cellular senescence, and neuronal dysfunction. In summary, CD34-NSG humanized mice are identified as a valuable model for studying HIV-1-associated aging. Biomarkers of immune senescence and neuronal signaling are both age- and virus-associated. By exploring the underlying biological mechanisms that are linked to these biomarkers, interventions for next generation HIV-1-infected patients can be realized.

16.
Res Sq ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38883780

RESUMO

Antiretroviral therapy (ART) improves the quality of life for those living with the human immunodeficiency virus type one (HIV-1). However, poor compliance reduces ART effectiveness and leads to immune compromise, viral mutations, and disease co-morbidities. A novel drug formulation is made whereby a lipid nanoparticle (LNP) carrying rilpivirine (RPV) is decorated with the C-C chemokine receptor type 5 (CCR5). This facilitates myeloid drug depot deposition. Particle delivery to viral reservoirs is tracked by positron emission tomography. The CCR5-mediated RPV LNP cell uptake and retention reduce HIV-1 replication in human monocyte-derived macrophages and infected humanized mice. Focused ultrasound allows the decorated LNP to penetrate the blood-brain barrier and reach brain myeloid cells. These findings offer a role for CCR5-targeted therapeutics in antiretroviral delivery to optimize HIV suppression.

17.
Commun Biol ; 7(1): 387, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553542

RESUMO

Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between HIV infection and cocaine use disorder is likely bidirectional, with cocaine use directly impacting immune function while HIV infection alters addiction-related behavior. To better characterize the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilizes a humanized mouse model to investigate the outcomes of HIV-1 infection on cocaine-related behaviors in a conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection selectively impairs cocaine CPP extinction without effecting reinstatement or cocaine seeking under conflict. Behavioral alterations are accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes are observed in human cytokines, including HIV-induced reductions in human TNFα, and cocaine and HIV interactions on GM-CSF levels. Together these data provide new insights into the unique neurobehavioral outcomes of HIV infection and cocaine exposure and how they interact to effect immune responses.


Assuntos
Cocaína , Infecções por HIV , Camundongos , Humanos , Animais , Infecções por HIV/complicações , Extinção Psicológica , Encéfalo , Córtex Pré-Frontal
18.
Cell Rep Med ; : 101790, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39426374

RESUMO

Neurosurgeries complicated by infection are associated with prolonged treatment and significant morbidity. Craniotomy is a common neurosurgical procedure; however, the cellular and molecular signatures associated with craniotomy infection in human subjects are unknown. A retrospective study of over 2,500 craniotomies reveals diverse patient demographics, pathogen identity, and surgical landscapes associated with infection. Leukocyte profiling in patient tissues from craniotomy infection characterizes a predominance of granulocytic myeloid-derived suppressor cells that may arise from transmigrated blood neutrophils, based on single-cell RNA sequencing (scRNA-seq) trajectory analysis. Single-cell transcriptomic analysis identifies metabolic shifts in tissue leukocytes, including a conserved hypoxia-inducible factor (HIF) signature. The importance of HIF signaling was validated using a mouse model of Staphylococcus aureus craniotomy infection, where HIF inhibition increases chemokine production and leukocyte recruitment, exacerbating tissue pathology. These findings establish conserved metabolic and transcriptional signatures that may represent promising future therapeutic targets for human craniotomy infection in the face of increasing antimicrobial resistance.

19.
J Infect Dis ; 206(10): 1577-88, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22811299

RESUMO

Lack of adherence, inaccessibility to viral reservoirs, long-term drug toxicities, and treatment failures are limitations of current antiretroviral therapy (ART). These limitations lead to increased viral loads, medicine resistance, immunocompromise, and comorbid conditions. To this end, we developed long-acting nanoformulated ART (nanoART) through modifications of existing atazanavir, ritonavir, and efavirenz suspensions in order to establish cell and tissue drug depots to achieve sustained antiretroviral responses. NanoART's abilities to affect immune and antiviral responses, before or following human immunodeficiency virus type 1 infection were tested in nonobese severe combined immune-deficient mice reconstituted with human peripheral blood lymphocytes. Weekly subcutaneous injections of drug nanoformulations at doses from 80 mg/kg to 250 mg/kg, 1 day before and/or 1 and 7 days after viral exposure, elicited drug levels that paralleled the human median effective concentration, and with limited toxicities. NanoART treatment attenuated viral replication and preserved CD4(+) Tcell numbers beyond that seen with orally administered native drugs. These investigations bring us one step closer toward using long-acting antiretrovirals in humans.


Assuntos
Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Linfócitos/virologia , Nanoestruturas/química , Animais , Fármacos Anti-HIV/sangue , Fármacos Anti-HIV/química , Linfócitos T CD4-Positivos , Formas de Dosagem , Relação Dose-Resposta a Droga , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Linfócitos/imunologia , Masculino , Camundongos , Camundongos Knockout , Camundongos SCID , Subpopulações de Linfócitos T
20.
Pathogens ; 12(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37513726

RESUMO

A major roadblock to achieving a cure for human immunodeficiency virus type one (HIV-1) is the persistence of latent viral infections in the cells and tissue compartments of an infected human host. Latent HIV-1 proviral DNA persists in resting memory CD4+ T cells and mononuclear phagocytes (MPs; macrophages, microglia, and dendritic cells). Tissue viral reservoirs of both cell types reside in the gut, lymph nodes, bone marrow, spleen, liver, kidney, skin, adipose tissue, reproductive organs, and brain. However, despite the identification of virus-susceptible cells, several limitations persist in identifying broad latent reservoirs in infected persons. The major limitations include their relatively low abundance, the precise identification of latently infected cells, and the lack of biomarkers for identifying latent cells. While primary MP and CD4+ T cells and transformed cell lines are used to interrogate mechanisms of HIV-1 persistence, they often fail to accurately reflect the host cells and tissue environments that carry latent infections. Given the host specificity of HIV-1, there are few animal models that replicate the natural course of viral infection with any precision. These needs underlie the importance of humanized mouse models as both valuable and cost-effective tools for studying viral latency and subsequently identifying means of eliminating it. In this review, we discuss the advantages and limitations of humanized mice for studies of viral persistence and latency with an eye toward using these models to test antiretroviral and excision therapeutics. The goals of this research are to use the models to address how and under which circumstances HIV-1 latency can be detected and eliminated. Targeting latent reservoirs for an ultimate HIV-1 cure is the task at hand.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa