RESUMO
In this work, a sensitive coating based on Langmuir-Blodgett (LB) films containing monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) with an immobilized glucose oxidase (GOx) enzyme was created. The immobilization of the enzyme in the LB film occurred during the formation of the monolayer. The effect of the immobilization of GOx enzyme molecules on the surface properties of a Langmuir DPPE monolayer was investigated. The sensory properties of the resulting LB DPPE film with an immobilized GOx enzyme in a glucose solution of various concentrations were studied. It has shown that the immobilization of GOx enzyme molecules into the LB DPPE film leads to a rising LB film conductivity with an increasing glucose concentration. Such an effect made it possible to conclude that acoustic methods can be used to determine the concentration of glucose molecules in an aqueous solution. It was found that for an aqueous glucose solution in the concentration range from 0 to 0.8 mg/mL the phase response of the acoustic mode at a frequency of 42.7 MHz has a linear form, and its maximum change is 55°. The maximum change in the insertion loss for this mode was 18 dB for a glucose concentration in the working solution of 0.4 mg/mL. The range of glucose concentrations measured using this method, from 0 to 0.9 mg/mL, corresponds to the corresponding range in the blood. The possibility of changing the conductivity range of a glucose solution depending on the concentration of the GOx enzyme in the LB film will make it possible to develop glucose sensors for higher concentrations. Such technological sensors would be in demand in the food and pharmaceutical industries. The developed technology can become the basis for creating a new generation of acoustoelectronic biosensors in the case of using other enzymatic reactions.
Assuntos
Enzimas Imobilizadas , Glucose Oxidase , Glucose , Técnicas Biossensoriais/métodosRESUMO
Properties of the Langmuir-Blodgett (LB) films of arachidic and stearic acids, versus the amount of the films' monolayers were studied and applied for chloroform vapor detection with acoustoelectric high-frequency SAW sensors, based on an AT quartz two-port Rayleigh type SAW resonator (414 MHz) and ST-X quartz SAW delay line (157.5 MHz). Using both devices, it was confirmed that the film with 17 monolayers of stearic acid deposited on the surface of the SAW delay line at a surface pressure of 30 mN/m in the solid phase has the best sensitivity towards chloroform vapors, compared with the same films with other numbers of monolayers. For the SAW resonator sensing using slightly longer arachidic acid molecules, the optimum performance was reached with 17 LB film layers due to a sharper decrease in the Q-factor with mass loading. To understand the background of the result, Atomic Force Microscopy (AFM) in intermittent contact mode was used to study the morphology of the films, depending on the number of monolayers. The presence of the advanced morphology of the film surface with a maximal average roughness (9.3 nm) and surface area (29.7 µm2) was found only for 17-monolayer film. The effects of the chloroform vapors on the amplitude and the phase of the acoustic signal for both SAW devices at 20 °C were measured and compared with those for toluene and ethanol vapors; the largest responses were detected for chloroform vapor. For the film with an optimal number of monolayers, the largest amplitude response was measured for the resonator-based device. Conversely, the largest change in the acoustic phase produced by chloroform adsorption was measured for delay-line configuration. Finally, it was established that the gas responses for both devices coated with the LB films are completely restored 60 s after chamber cleaning with dry air.
RESUMO
The process of formation of a Langmuir-Schaefer (LS) matrix based on a mixed monolayer of arachidic acid (AA) and 8 nm CdSe/CdS/ZnS quantum dots (QDs) stabilized by molecules of trioctylphosphine oxide (TOPO) was investigated. The change in the morphology, monolayer compressibility, and area per elementary cell of the created mixed monolayers, depending on the ratio of the components, was studied. It is shown that the change in the morphology of Langmuir-Blodgett (LB) monolayers begins to occur at a ratio between the number of QDs and AA molecules of 1:24. Dendrimeric structures with a thickness of the order of 30-40 nm appear in the mixed monolayer when LB film deposition was carried out above the collapse surface pressure of a Langmuir film from only TOPO-covered QDs. Information on the dependence of the morphology of such structures on the molar ratio of the components is necessary for the production of ordered 2D nanostructures containing 0D and 1D objects with quantum bonds. Such nanostructures can be used in nanoelectronic and optoelectronic devices as a sensitive sensor element. The obtained results would be relevant for any type of spherical shape nanoparticles.