Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Am J Physiol Cell Physiol ; 326(3): C768-C783, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314723

RESUMO

Arrestin domain containing 2 and 3 (Arrdc2/3) are genes whose mRNA contents are decreased in young skeletal muscle following mechanical overload. Arrdc3 is linked to the regulation of signaling pathways in nonmuscle cells that could influence skeletal muscle size. Despite a similar amino acid sequence, Arrdc2 function remains undefined. The purpose of this study was to further explore the relationship of Arrdc2/Arrdc3 expression with changes in mechanical load in young and aged muscle and define the effect of Arrdc2/3 expression on C2C12 myotube diameter. In young and aged mice, mechanical load was decreased using hindlimb suspension whereas mechanical load was increased by reloading previously unloaded muscle or inducing high-force contractions. Arrdc2 and Arrdc3 mRNAs were overexpressed in C2C12 myotubes using adenoviruses. Myotube diameter was determined 48-h posttransfection, and RNA sequencing was performed on those samples. Arrdc2 and Arrdc3 mRNA content was higher in the unloaded muscle within 1 day of disuse and remained higher up through 10 days. The induction of Arrdc2 mRNA was more pronounced in aged muscle than young muscle in response to unloading. Reloading previously unloaded muscle of young and aged mice restored Arrdc2 and Arrdc3 levels to ambulatory levels. Increasing mechanical load beyond normal ambulatory levels lowered Arrdc2 mRNA, but not Arrdc3 mRNA, in young and aged muscle. Arrdc2 overexpression only was sufficient to lower myotube diameter in C2C12 cells in part by altering the transcriptome favoring muscle atrophy. These data are consistent with Arrdc2 contributing to disuse atrophy, particularly in aged muscle.NEW & NOTEWORTHY We establish Arrdc2 as a novel mechanosensitive gene highly induced in response to mechanical unloading, particularly in aged muscle. Arrdc2 induction in C2C12 myotubes is sufficient to produce thinner myotubes and a transcriptional landscape consistent with muscle atrophy and disuse.


Assuntos
Arrestinas , Fibras Musculares Esqueléticas , Transtornos Musculares Atróficos , Animais , Camundongos , Envelhecimento/genética , Arrestinas/genética , Arrestinas/metabolismo , Músculo Esquelético , Atrofia Muscular/genética , RNA Mensageiro/genética
2.
J Physiol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861348

RESUMO

Older adults are vulnerable to glucocorticoid-induced muscle atrophy and weakness, with sex potentially influencing their susceptibility to those effects. Aerobic exercise can reduce glucocorticoid-induced muscle atrophy in young rodents. However, it is unknown whether aerobic exercise can prevent glucocorticoid myopathy in aged muscle. The objectives of this study were to define the extent to which sex influences the development of glucocorticoid myopathy in aged muscle, and to determine the extent to which aerobic exercise training protects against myopathy development. Twenty-four-month-old female (n = 30) and male (n = 33) mice were randomized to either sedentary or aerobic exercise groups. Within their respective groups, mice were randomized to either daily treatment with dexamethasone (DEX) or saline. Upon completing treatments, the contractile properties of the triceps surae complex were assessed in situ. DEX marginally lowered muscle mass and soluble protein content in both sexes, which was attenuated by aerobic exercise only in females. DEX increased sub-tetanic force and rate of force development only in females, which was not influenced by aerobic exercise. Muscle fatigue was higher in both sexes following DEX, but aerobic exercise prevented fatigue induction only in females. The sex-specific differences to muscle function in response to DEX treatment coincided with sex-specific changes to the content of proteins related to calcium handling, mitochondrial quality control, reactive oxygen species production, and glucocorticoid receptor in muscle. These findings define several important sexually dimorphic changes to aged skeletal muscle physiology in response to glucocorticoid treatment and define the capacity of short-term aerobic exercise to protect against those changes. KEY POINTS: There are sexually dimorphic effects of glucocorticoids on aged skeletal muscle physiology. Glucocorticoid-induced changes to aged muscle contractile properties coincide with sex-specific differences in the content of calcium handling proteins. Aerobic exercise prevents glucocorticoid-induced fatigue only in aged females and coincides with differences in the content of mitochondrial quality control proteins and glucocorticoid receptors.

3.
J Physiol ; 601(17): 3885-3903, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531448

RESUMO

In males, the factors that decrease limb muscle mass and strength in response to androgen deprivation are largely unknown. Sirtuin1 (SIRT1) protein levels are lower in the limb muscle of male mice subjected to androgen deprivation. The present study aimed to assess whether SIRT1 induction preserved limb muscle mass and force production in response to androgen deprivation. Physically mature male mice containing an inducible muscle-specific SIRT1 transgene were subjected to a sham or castration surgery and compared to sham and castrated male mice where the SIRT1 transgene was not induced. SIRT1 induction partially preserved whole-body lean mass, tibialis anterior (TA) mass and triceps surae muscle mass in response to castration. Further analysis of the TA muscle showed that muscle-specific SIRT1 induction partially preserved limb muscle soluble protein content and fibre cross-sectional area. Unilateral AAV9-mediated SIRT1 induction in the TA muscle showed that SIRT1 partially preserved mass by acting directly in the muscle. Despite those positive outcomes to limb muscle morphology, muscle-specific SIRT1 induction did not preserve the force generating capacity of the TA or triceps surae muscles. Interestingly, SIRT1 induction in females did not alter limb muscle mass or limb muscle strength even though females have naturally low androgen levels. SIRT1 also did not alter the androgen-mediated increase in limb muscle mass or strength in females. In all, these data suggest that decreases in SIRT1 protein in the limb muscle of males may partially contribute to the loss of limb muscle mass in response to androgen deprivation. KEY POINTS: SIRT1 induction in skeletal muscle of male mice subjected to androgen deprivation partially preserved limb muscle mass and fibre cross-sectional area. SIRT1 induction in skeletal muscle of male mice subjected to androgen deprivation did not prevent preserve limb muscle force generating capacity. SIRT1 induction in skeletal muscle of females did not alter baseline limb muscle mass, nor did it affect the androgen-mediated increase in limb muscle mass.


Assuntos
Androgênios , Neoplasias da Próstata , Sirtuína 1 , Animais , Masculino , Camundongos , Antagonistas de Androgênios/metabolismo , Androgênios/farmacologia , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Neoplasias da Próstata/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
4.
Biochem Biophys Res Commun ; 682: 124-131, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37806250

RESUMO

In males, androgens regulate whole body metabolism. The components in androgen target organs contributing to whole-body metabolic function remain ill defined. Sirtuin1 (SIRT1) protein levels are lower in the limb muscle of male mice subjected to androgen deprivation. Because SIRT1 can influence whole-body metabolism, the purpose was to assess whether muscle specific SIRT1 induction attenuated changes to whole-body metabolism in response to androgen deprivation. Physically mature male mice containing an inducible muscle specific SIRT1 transgene (SIRT1) were subjected to a sham or castration surgery and compared to sham and castrated male mice where the SIRT1 transgene was not induced (WT). The respiratory exchange ratio (RER), energy expenditure, and carbohydrate and fat oxidation rates were determined using metabolic cages. Castration lowered RER in WT mice and the lower RER coincided with lower energy expenditure, lower carbohydrate oxidation rates, and higher fat oxidation rates. SIRT1 induction attenuated the castration-induced changes to RER and fat oxidation rates. Changes to energy expenditure and glucose oxidation rates were not affected by SIRT1. Decreases in muscle SIRT1 protein in males may partially contribute to the dysregulation of whole-body metabolism in response to androgen deprivation.


Assuntos
Androgênios , Neoplasias da Próstata , Animais , Masculino , Camundongos , Antagonistas de Androgênios , Androgênios/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Músculo Esquelético/metabolismo , Neoplasias da Próstata/metabolismo , Sirtuína 1/metabolismo
5.
Physiol Genomics ; 54(9): 360-369, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35848636

RESUMO

Mechanical overload and nutrients influence skeletal muscle phenotype, with the combination sometimes having a synergistic effect. Muscle phenotypes influenced by these stimuli are mediated in part by changes to the muscle mRNA signature. However, the mechanical overload-sensitive gene programs that are influenced by nutrients remain unclear. The purpose of this study was to identify mechanical overload-sensitive gene programs that are influenced by nutrients and identify potential transcription factors that may differentiate the change in mRNA in response to mechanical overload versus nutrients. Nutrient-deprived 12-wk-old male mice were randomized to remain fasted or allowed access to food. All mice underwent a single bout of unilateral high force contractions of the tibialis anterior (TA). Four hours postcontractions TA muscles were extracted and the content of 12 contraction-sensitive mRNAs was analyzed. The mRNA content of genes associated with transcription, PI3K-Akt signaling pathway, Z-disc, intracellular signal transduction, cell cycle, and amino acid transport was altered by contractions without the influence of nutrient consumption. Conversely, the mRNA content of genes associated with transcription, cell cycle, FoxO signaling pathway, and amino acid transport was altered by contractions with nutrition consumption influencing the change. We identified the signal transducer and activator of transcription 3 (STAT3) and activator protein 1 (AP-1) as transcription factors common among mRNAs that were primarily altered by mechanical overload regardless of feeding. Overall, these data provide a deeper molecular basis for the specific muscle phenotypes exclusive to mechanical overload versus those regulated by the addition of nutrients.


Assuntos
Músculo Esquelético , Fosfatidilinositol 3-Quinases , Aminoácidos/metabolismo , Animais , Masculino , Camundongos , Músculo Esquelético/metabolismo , Nutrientes , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Am J Physiol Endocrinol Metab ; 323(3): E215-E230, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35793479

RESUMO

Alcohol is a myotoxin that disrupts skeletal muscle function and metabolism, but specific metabolic alternations following a binge and the time course of recovery remain undefined. The purpose of this work was to determine the metabolic response to binge alcohol, the role of corticosterone in this response, and whether nutrient availability mediates the response. Female mice received saline (control) or alcohol (EtOH) (5 g/kg) via intraperitoneal injection at the start of the dark cycle. Whole body metabolism was assessed for 5 days. In a separate cohort, gastrocnemius muscles and liver were collected every 4 h for 48 h following intoxication. Metyrapone was administered before alcohol and gastrocnemius was collected 4 h later. Lastly, alcohol-treated mice were compared with fed or fasted controls. Alcohol disrupted whole body metabolism for multiple days. Alcohol altered the expression of genes and proteins in the gastrocnemius related to the promotion of fat oxidation (Pparα, Pparδ/ß, AMPK, and Cd36) and protein breakdown (Murf1, Klf15, Bcat2). Changes to select metabolic genes in the liver did not parallel those in skeletal muscle. An alcohol-induced increase in circulating corticosterone was responsible for the initial change in protein breakdown factors but not the induction of FoxO1, Cebpß, Pparα, and FoxO3. Alcohol led to a similar, but distinct metabolic response when compared with fasting animals. Overall, these data show that an acute alcohol binge rapidly disrupts macronutrient metabolism including sustained disruption to the metabolic gene signature of skeletal muscle in a manner similar to fasting at some time points.NEW & NOTEWORTHY Herein, we demonstrate that acute alcohol intoxication immediately alters whole body metabolism coinciding with rapid changes in the skeletal muscle macronutrient gene signature for at least 48 h postbinge and that this response diverges from hepatic effects and those of a fasted animal.


Assuntos
Intoxicação Alcoólica , Consumo Excessivo de Bebidas Alcoólicas , Corticosterona , Músculo Esquelético , Intoxicação Alcoólica/complicações , Intoxicação Alcoólica/metabolismo , Animais , Consumo Excessivo de Bebidas Alcoólicas/complicações , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Antígenos CD36 , Corticosterona/metabolismo , Corticosterona/farmacologia , Etanol/toxicidade , Feminino , Humanos , Camundongos , Músculo Esquelético/metabolismo , PPAR alfa
7.
Am J Physiol Endocrinol Metab ; 321(5): E606-E620, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34541876

RESUMO

Circadian rhythms are central to optimal physiological function, as disruption contributes to the development of several chronic diseases. Alcohol (EtOH) intoxication disrupts circadian rhythms within liver, brain, and intestines, but it is unknown whether alcohol also disrupts components of the core clock in skeletal muscle. Female C57BL/6Hsd mice were randomized to receive either saline (control) or alcohol (EtOH) (5 g/kg) via intraperitoneal injection at the start of the dark cycle [Zeitgeber time (ZT12)], and gastrocnemius was collected every 4 h from control and EtOH-treated mice for the next 48 h following isoflurane anesthetization. In addition, metyrapone was administered before alcohol intoxication in separate mice to determine whether the alcohol-induced increase in serum corticosterone contributed to circadian gene regulation. Finally, synchronized C2C12 myotubes were treated with alcohol (100 mM) to assess the influence of centrally or peripherally mediated effects of alcohol on the muscle clock. Alcohol significantly disrupted mRNA expression of Bmal1, Per1/2, and Cry1/2 in addition to perturbing the circadian pattern of clock-controlled genes, Myod1, Dbp, Tef, and Bhlhe40 (P < 0.05), in muscle. Alcohol increased serum corticosterone levels and glucocorticoid target gene, Redd1, in muscle. Metyrapone prevented the EtOH-mediated increase in serum corticosterone but did not normalize the EtOH-induced change in Per1, Cry1 and Cry2, and Myod1 mRNA expression. Core clock gene expression (Bmal, Per1/2, and Cry1/2) was not changed following 4, 8, or 12 h of alcohol treatment on synchronized C2C12 myotubes. Therefore, binge alcohol disrupted genes of the core molecular clock independently of elevated serum corticosterone or direct effects of EtOH on the muscle.NEW & NOTEWORTHY Alcohol is a myotoxin that impairs skeletal muscle metabolism and function following either chronic consumption or acute binge drinking; however, mechanisms underlying alcohol-related myotoxicity have not been fully elucidated. Herein, we demonstrate that alcohol acutely interrupts oscillation of skeletal muscle core clock genes, and this is neither a direct effect of ethanol on the skeletal muscle, nor an effect of elevated serum corticosterone, a major clock regulator.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ritmo Circadiano/efeitos dos fármacos , Glucocorticoides/metabolismo , Músculo Esquelético/metabolismo , Intoxicação Alcoólica/sangue , Animais , Ritmo Circadiano/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Metirapona/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
8.
Mol Cell Biochem ; 476(2): 959-969, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33128669

RESUMO

Hypogonadism contributes to limb skeletal muscle atrophy by increasing rates of muscle protein breakdown. Androgen depletion increases markers of the autophagy protein breakdown pathway in the limb muscle that persist throughout the diurnal cycle. However, the regulatory signals underpinning the increase in autophagy markers remain ill-defined. The purpose of this study was to characterize changes to autophagy regulatory signals in the limb skeletal muscle following androgen depletion. Male mice were subjected to a castration surgery or a sham surgery as a control. Seven weeks post-surgery, a subset of mice from each group was sacrificed every 4 hr over a 24 hr period. Protein and mRNA from the Tibialis Anterior (TA) were subjected to Western blot and RT-PCR. Consistent with an overall increase in autophagy, the phosphorylation pattern of Uncoordinated Like Kinase 1 (ULK1) (Ser555) was elevated throughout the diurnal cycle in the TA of castrated mice. Factors that induce the progression of autophagy were also increased in the TA following androgen depletion including an increase in the phosphorylation of c-Jun N-terminal Kinase (JNK) (Thr183/Tyr185) and an increase in the ratio of BCL-2 Associated X (BAX) to B-cell lymphoma 2 (BCL-2). Moreover, we observed an increase in the protein expression pattern of p53 and the mRNA of the p53 target genes Cyclin-Dependent Kinase Inhibitor 1A (p21) and Growth Arrest and DNA Damage Alpha (Gadd45a), which are known to increase autophagy and induce muscle atrophy. These data characterize novel changes to autophagy regulatory signals in the limb skeletal muscle following androgen deprivation.


Assuntos
Antagonistas de Androgênios/farmacologia , Androgênios/deficiência , Ritmo Circadiano/fisiologia , Músculo Esquelético/metabolismo , Animais , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Modelos Animais de Doenças , Extremidades/patologia , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Fosforilação , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
9.
Physiol Genomics ; 51(6): 208-217, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31002587

RESUMO

Skeletal muscle is a highly plastic organ regulating various processes in the body. As such, loss of skeletal muscle underlies the increased morbidity and mortality risk that is associated with numerous conditions. However, no therapies are available to combat the loss of muscle mass during atrophic conditions, which is due in part to the incomplete understanding of the molecular networks altered by anabolic and catabolic stimuli. Thus, the current objective was to identify novel gene networks modulated by such stimuli. For this, total RNA from the tibialis anterior muscle of mice that were fasted overnight or fasted overnight and refed the next morning was subjected to microarray analysis. The refeeding stimulus altered the expression of genes associated with signal transduction. Specifically, expression of alpha arrestin domain containing 2 (Arrdc2) and alpha arrestin domain containing 3 (Arrdc3) was significantly lowered 70-85% by refeeding. Subsequent analysis showed that expression of these genes was also lowered 50-75% by mechanical overload, with the combination of nutrients and mechanical overload acting synergistically to lower Arrdc2 and Arrdc3 expression. On the converse, stimuli that suppress growth such as testosterone depletion or acute aerobic exercise increased Arrdc2 and Arrdc3 expression in skeletal muscle. While Arrdc2 and Arrdc3 exhibited divergent changes in expression following anabolic or catabolic stimuli, no other member of the Arrdc family of genes exhibited the consistent change in expression across the analyzed conditions. Thus, Arrdc2 and Arrdc3 are a novel set of genes that may be implicated in the regulation of skeletal muscle mass.


Assuntos
Anabolizantes/metabolismo , Arrestinas/genética , Expressão Gênica/genética , Metabolismo/genética , Músculo Esquelético/metabolismo , beta-Arrestina 1/genética , Animais , Jejum/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética
10.
Am J Physiol Endocrinol Metab ; 317(4): E631-E645, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31361545

RESUMO

Androgen depletion in humans leads to significant atrophy of the limb muscles. However, the pathways by which androgens regulate limb muscle mass are unclear. Our laboratory previously showed that mitochondrial degradation was related to the induction of autophagy and the degree of muscle atrophy following androgen depletion, implying that decreased mitochondrial quality contributes to muscle atrophy. To increase our understanding of androgen-sensitive pathways regulating decreased mitochondrial quality, total RNA from the tibialis anterior of sham and castrated mice was subjected to microarray analysis. Using this unbiased approach, we identified significant changes in the expression of genes that compose the core molecular clock. To assess the extent to which androgen depletion altered the limb muscle clock, the tibialis anterior muscles from sham and castrated mice were harvested every 4 h throughout a diurnal cycle. The circadian expression patterns of various core clock genes and known clock-controlled genes were disrupted by castration, with most genes exhibiting an overall reduction in phase amplitude. Given that the core clock regulates mitochondrial quality, disruption of the clock coincided with changes in the expression of genes involved with mitochondrial quality control, suggesting a novel mechanism by which androgens may regulate mitochondrial quality. These events coincided with an overall increase in mitochondrial degradation in the muscle of castrated mice and an increase in markers of global autophagy-mediated protein breakdown. In all, these data are consistent with a novel conceptual model linking androgen depletion-induced limb muscle atrophy to reduced mitochondrial quality control via disruption of the molecular clock.


Assuntos
Androgênios/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Extremidades/fisiologia , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Atrofia , Autofagia , Peso Corporal , Extremidades/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitofagia , Músculo Esquelético/patologia , Orquiectomia , Testosterona/fisiologia , Tíbia/anatomia & histologia , Tíbia/crescimento & desenvolvimento
11.
Biochem Biophys Res Commun ; 508(3): 871-876, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30538043

RESUMO

Exercise increases skeletal muscle health in part by altering the types of genes that are transcribed. Previous work suggested that glucocorticoids signal through the protein Regulated in Development and DNA Damage 1 (REDD1) to regulate gene expression following acute aerobic exercise. The present study shows that expression of the core clock gene, Period1, is among those modulated by the glucocorticoid-REDD1 signaling pathway in skeletal muscle. We also provide evidence that Aldosterone and Epinephrine contribute to the regulation of Period1 expression via REDD1. These data show that adrenal stress hormones signal through REDD1 to regulate skeletal muscle gene expression, specifically those of the core clock, following acute aerobic exercise.


Assuntos
Regulação da Expressão Gênica , Glucocorticoides/farmacologia , Músculo Esquelético/metabolismo , Proteínas Circadianas Period/genética , Condicionamento Físico Animal , Fatores de Transcrição/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Aldosterona/farmacologia , Animais , Células Cultivadas , Corticosterona/farmacologia , Dexametasona/farmacologia , Epinefrina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Circadianas Period/biossíntese , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/fisiologia
12.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R721-R729, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897818

RESUMO

Signaling through the mechanistic target of rapamycin complex 1 (mTORC1) has been well defined as an androgen-sensitive transducer mediating skeletal muscle growth in vitro; however, this has yet to be tested in vivo. As such, male mice were subjected to either sham or castration surgery and allowed to recover for 7 wk to induce atrophy of skeletal muscle. Then, castrated mice were implanted with either a control pellet or a pellet that administered rapamycin (~2.5 mg·kg-1·day-1). Seven days postimplant, a subset of castrated mice with control pellets and all castrated mice with rapamycin pellets were given once weekly injections of nandrolone decanoate (ND) to induce muscle growth over a six-week period. Effective blockade of mTORC1 by rapamycin was noted in the skeletal muscle by the inability of insulin to induce phosphorylation of ribosomal S6 kinase 1 70 kDa (Thr389) and uncoordinated-like kinase 1 (Ser757). While castration reduced tibialis anterior (TA) mass, muscle fiber cross-sectional area, and total protein content, ND administration restored these measures to sham levels in a rapamycin-insensitive manner. Similar findings were also observed in the plantaris and soleus, suggesting this rapamycin-insensitive effect was not specific to the TA or fiber type. Androgen-mediated growth was not due to changes in translational capacity. Despite these findings in the limb skeletal muscle, rapamycin completely prevented the ND-mediated growth of the heart. In all, these data indicate that mTORC1 has a limited role in the androgen-mediated growth of the limb skeletal muscle; however, mTORC1 was necessary for androgen-mediated growth of heart muscle.


Assuntos
Anabolizantes/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Decanoato de Nandrolona/farmacologia , Sirolimo/farmacologia , Anabolizantes/administração & dosagem , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Implantes de Medicamento , Injeções Intramusculares , Insulina/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Decanoato de Nandrolona/administração & dosagem , Orquiectomia , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/crescimento & desenvolvimento , Músculos Papilares/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem
13.
Am J Physiol Endocrinol Metab ; 313(6): E737-E747, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28899858

RESUMO

The metabolic stress placed on skeletal muscle by aerobic exercise promotes acute and long-term health benefits in part through changes in gene expression. However, the transducers that mediate altered gene expression signatures have not been completely elucidated. Regulated in development and DNA damage 1 (REDD1) is a stress-induced protein whose expression is transiently increased in skeletal muscle following acute aerobic exercise. However, the role of this induction remains unclear. Because REDD1 altered gene expression in other model systems, we sought to determine whether REDD1 induction following acute exercise altered the gene expression signature in muscle. To do this, wild-type and REDD1-null mice were randomized to remain sedentary or undergo a bout of acute treadmill exercise. Exercised mice recovered for 1, 3, or 6 h before euthanization. Acute exercise induced a transient increase in REDD1 protein expression within the plantaris only at 1 h postexercise, and the induction occurred in both cytosolic and nuclear fractions. At this time point, global changes in gene expression were surveyed using microarray. REDD1 induction was required for the exercise-induced change in expression of 24 genes. Validation by RT-PCR confirmed that the exercise-mediated changes in genes related to exercise capacity, muscle protein metabolism, neuromuscular junction remodeling, and Metformin action were negated in REDD1-null mice. Finally, the exercise-mediated induction of REDD1 was partially dependent upon glucocorticoid receptor activation. In all, these data show that REDD1 induction regulates the exercise-mediated change in a distinct set of genes within skeletal muscle.


Assuntos
Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Aerobiose , Animais , Núcleo Celular/metabolismo , Corticosterona/sangue , Citosol/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Hipoglicemiantes/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Fadiga Muscular , Receptores de Glucocorticoides/metabolismo
14.
Am J Physiol Endocrinol Metab ; 311(1): E157-74, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189933

RESUMO

Since its discovery, the protein regulated in development and DNA damage 1 (REDD1) has been implicated in the cellular response to various stressors. Most notably, its role as a repressor of signaling through the central metabolic regulator, the mechanistic target of rapamycin in complex 1 (mTORC1) has gained considerable attention. Not surprisingly, changes in REDD1 mRNA and protein have been observed in skeletal muscle under various physiological conditions (e.g., nutrient consumption and resistance exercise) and pathological conditions (e.g., sepsis, alcoholism, diabetes, obesity) suggesting a role for REDD1 in regulating mTORC1-dependent skeletal muscle protein metabolism. Our understanding of the causative role of REDD1 in skeletal muscle metabolism is increasing mostly due to the availability of genetically modified mice in which the REDD1 gene is disrupted. Results from such studies provide support for an important role for REDD1 in the regulation of mTORC1 as well as reveal unexplored functions of this protein in relation to other aspects of skeletal muscle metabolism. The goal of this work is to provide a comprehensive review of the role of REDD1 (and its paralog REDD2) in skeletal muscle during both physiological and pathological conditions.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Alcoolismo/metabolismo , Animais , Diabetes Mellitus/metabolismo , Exercício Físico , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Obesidade/metabolismo , Condicionamento Físico Animal , Ratos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Treinamento Resistido , Sepse/metabolismo , Fatores de Transcrição/fisiologia
15.
Am J Physiol Regul Integr Comp Physiol ; 311(3): R545-57, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27465734

RESUMO

The overload-induced increase in muscle mass is accompanied by protein accretion; however, the initiating events are poorly understood. Regulated in Development and DNA Damage 1 (REDD1), a repressor of the mechanistic target of rapamycin in complex 1 (mTORC1), blunts the elevation in protein synthesis induced by acute muscle contractions. Therefore, this study was designed to determine whether REDD1 alters the rate of the overload-induced increase in muscle mass. Wild-type (WT) and REDD1-null mice underwent unilateral functional overload (OV) of the plantaris, while the contralateral sham leg served as a control. After 3 and 5 days of OV, puromycin incorporation was used as a measurement of protein synthesis. The percent increase in plantaris wet weight and protein content was greater in REDD1-null mice after 3, 5, and 10 days OV. The overload-stimulated rate of protein synthesis in the plantaris was similar between genotypes after 3 days OV, but translational capacity was lower in REDD1-null mice, indicating elevated translational efficiency. This was likely due to elevated absolute mTORC1 signaling [phosphorylation of p70S6K1 (Thr-389) and 4E-BP1 (Ser-65)]. By 5 days of OV, the rate of protein synthesis in REDD1-null mice was lower than WT mice with no difference in absolute mTORC1 signaling. Additionally, markers of autophagy (LC3II/I ratio and p62 protein) were decreased to a greater absolute extent after 3 days OV in REDD1-null mice. These data suggest that loss of REDD1 augments the rate of the OV-induced increase in muscle mass by altering multiple protein balance pathways.


Assuntos
Contração Muscular/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Biossíntese de Proteínas/fisiologia , Fatores de Transcrição/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão/fisiologia , Fatores de Transcrição/genética
16.
J Nutr ; 145(4): 708-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25716553

RESUMO

BACKGROUND: In skeletal muscle, the nutrient-induced stimulation of protein synthesis requires signaling through the mechanistic target of rapamycin complex 1 (mTORC1). Expression of the repressor of mTORC1 signaling, regulated in development and DNA damage 1 (REDD1), is elevated in muscle during various atrophic conditions and diminished under hypertrophic conditions. The question arises as to what extent REDD1 limits the nutrient-induced stimulation of protein synthesis. OBJECTIVE: The objective was to examine the role of REDD1 in limiting the response of muscle protein synthesis and mTORC1 signaling to a nutrient stimulus. METHODS: Wild type REDD1 gene (REDD1(+/+)) and disruption in the REDD1 gene (REDD1(-/-)) mice were feed deprived for 16 h and randomized to remain feed deprived or refed for 15 or 60 min. The tibialis anterior was then removed for analysis of protein synthesis and mTORC1 signaling. RESULTS: In feed-deprived mice, protein synthesis and mTORC1 signaling were significantly lower in REDD1(+/+) than in REDD1(-/-) mice. Thirty minutes after the start of refeeding, protein synthesis in REDD1(+/+) mice was stimulated by 28%, reaching a value similar to that observed in feed-deprived REDD1(-/-) mice, and was accompanied by increased phosphorylation of mTOR (Ser2448), p70S6K1 (Thr389), and 4E-BP1 (Ser65) by 81%, 167%, and 207%, respectively. In refed REDD1(-/-) mice, phosphorylation of mTOR (Ser2448), p70S6K1 (Thr389), and 4E-BP1 (Ser65) were significantly augmented above the values observed in refed REDD1(+/+) mice by 258%, 405%, and 401%, respectively, although protein synthesis was not coordinately increased. Seventy-five minutes after refeeding, REDD1 expression in REDD1(+/+) mice was reduced (∼15% of feed-deprived REDD1(+/+) values), and protein synthesis and mTORC1 signaling were not different between refed REDD1(+/+) mice and REDD1(-/-) mice. CONCLUSIONS: The results show that REDD1 expression limits protein synthesis in mouse skeletal muscle by inhibiting mTORC1 signaling during periods of feed deprivation and that a reduction in its expression is necessary for maximal stimulation of protein synthesis in response to refeeding.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Fatores de Iniciação em Eucariotos , Regulação da Expressão Gênica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Micronutrientes/administração & dosagem , Complexos Multiproteicos/genética , Proteínas Musculares/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética
17.
J Nutr ; 145(11): 2496-502, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26400964

RESUMO

BACKGROUND: The chronic activation of the mechanistic (mammalian) target of rapamycin in complex 1 (mTORC1) in response to excess nutrients contributes to obesity-associated pathologies. OBJECTIVE: To understand the initial events that ultimately lead to obesity-associated pathologies, the present study assessed mTORC1 responses in the liver after a relatively short exposure to a high-fat diet (HFD). METHODS: Male, obesity-prone rats were meal-trained to consume either a control (CON; 10% of energy from fat) diet or an HFD (60% of energy from fat) for 2 wk. Livers were collected and analyzed for mTORC1 signaling [assessed by changes in phosphorylation of 70-kDa ribosomal protein S6 kinase 1 (p70S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1)] and potential regulatory mechanisms, including changes in the association of Ras-related GTP binding (Rag) A and RagC with mechanistic target of rapamycin (mTOR) and expression of Sestrin1, Sestrin2, and Sestrin3. RESULTS: Feeding-induced activation of mTORC1 was blunted in the livers of rats fed the HFD compared with those fed the CON diet (p70S6K1 phosphorylation, 19% of CON; 4E-BP1 phosphorylation, 61% of CON). The attenuated response was not due to a change in a kinase also referred to as protein kinase B (Akt) signaling but rather to resistance to amino acid-induced activation of mTORC1, as evidenced by a reduction in the interaction of RagA (69% of CON) and RagC (66% of CON) with mTOR and enhanced expression of the mTORC1 repressors Sestrin2 (132% of CON) and Sestrin3 (143% of CON). The consumption of an HFD led to impaired amino acid-induced activation of mTORC1 as assessed in livers perfused in situ with medium containing various concentrations of amino acids. CONCLUSIONS: These results in rats support a model in which the initial response of the liver to an HFD is an attenuation of, rather than the expected activation of, mTORC1. The initial response likely represents a counterregulatory mechanism to handle the onset of excess nutrients and is caused by enhanced expression of Sestrin2 and Sestrin3, which, in turn, leads to impaired Rag signaling, resulting in resistance to amino acid-induced activation of mTORC1.


Assuntos
Aminoácidos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Glicemia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Imunoprecipitação , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Obesidade/tratamento farmacológico , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
18.
Am J Physiol Endocrinol Metab ; 306(12): E1397-405, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24801387

RESUMO

The present project was designed to investigate phosphorylation of p70S6K1 in an animal model of skeletal muscle overload. Within 24 h of male Sprague-Dawley rats undergoing unilateral tenotomy to induce functional overloading of the plantaris muscle, phosphorylation of the Thr³89 and Thr4²¹/Ser4²4 sites on p70S6K1 was significantly elevated. Since the Thr4²¹/Ser4²4 sites are purportedly mammalian target of rapamycin complex 1 (mTORC1) independent, we sought to identify the kinase(s) responsible for their phosphorylation. Initially, we used IGF-I treatment of serum-deprived HEK-293E cells as an in vitro model system, because IGF-I promotes phosphorylation of p70S6K1 on both the Thr³89 and Thr4²¹/Ser4²4 sites in skeletal muscle and in cells in culture. We found that, whereas the mTOR inhibitor TORIN2 prevented the IGF-I-induced phosphorylation of the Thr4²¹/Ser4²4 sites, it surprisingly enhanced phosphorylation of these sites during serum deprivation. JNK inhibition with SP600125 attenuated phosphorylation of the Thr4²¹/Ser4²4 sites, and in combination with TORIN2 both the effect of IGF-I and the enhanced Thr4²¹/Ser4²4 phosphorylation during serum deprivation were ablated. In contrast, both JNK activation with anisomycin and knockdown of the mTORC2 subunit rictor specifically stimulated phosphorylation of the Thr4²¹/Ser4²4 sites, suggesting that mTORC2 represses JNK-mediated phosphorylation of these sites. The role of JNK in mediating p70S6K1 phosphorylation was confirmed in the animal model noted above, where rats treated with SP600125 exhibited attenuated Thr4²¹/Ser4²4 phosphorylation. Overall, the results provide evidence that the mTORC1 and JNK signaling pathways coordinate the site-specific phosphorylation of p70S6K1. They also identify a novel role for mTORC1 and mTORC2 in the inhibition of JNK.


Assuntos
Transtornos Traumáticos Cumulativos/metabolismo , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Transtornos Traumáticos Cumulativos/fisiopatologia , Células HEK293 , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Fosforilação/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteína Companheira de mTOR Insensível à Rapamicina , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas/química , Serina/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Treonina/metabolismo
19.
Am J Physiol Endocrinol Metab ; 307(8): E703-11, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25159324

RESUMO

Regulated in DNA damage and development 1 (REDD1) is a repressor of mTOR complex 1 (mTORC1) signaling. In humans, REDD1 mRNA expression in skeletal muscle is repressed following resistance exercise in association with activation of mTORC1. However, whether REDD1 protein expression is also reduced after exercise and if so to what extent the loss contributes to exercise-induced activation of mTORC1 is unknown. Thus, the purpose of the present study was to examine the role of REDD1 in governing the response of mTORC1 and protein synthesis to a single bout of muscle contractions. Eccentric contractions of the tibialis anterior were elicited via electrical stimulation of the sciatic nerve in male mice in either the fasted or fed state or in fasted wild-type or REDD1-null mice. Four hours postcontractions, mTORC1 signaling and protein synthesis were elevated in fasted mice in association with repressed REDD1 expression relative to nonstimulated controls. Feeding coupled with contractions further elevated mTORC1 signaling, whereas REDD1 protein expression was repressed compared with either feeding or contractions alone. Basal mTORC1 signaling and protein synthesis were elevated in REDD1-null compared with wild-type mice. The magnitude of the increase in mTORC1 signaling was similar in both wild-type and REDD1-null mice, but, unlike wild-type mice, muscle contractions did not stimulate protein synthesis in mice deficient for REDD1, presumably because basal rates were already elevated. Overall, the data demonstrate that REDD1 expression contributes to the modulation of mTORC1 signaling following feeding- and contraction-induced activation of the pathway.


Assuntos
Regulação para Baixo , Complexos Multiproteicos/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima , Animais , Estimulação Elétrica , Ativação Enzimática , Regulação da Expressão Gênica , Membro Posterior , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/biossíntese , Músculo Esquelético/enzimologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fatores de Transcrição/genética
20.
Muscle Nerve ; 49(6): 915-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24375286

RESUMO

INTRODUCTION: Duchenne muscular dystrophy (DMD) is a lethal genetic disease caused by mutations in the dystrophin gene resulting in chronic muscle damage, muscle wasting, and premature death. Utrophin is a dystrophin protein homologue that increases dystrophic muscle function and reduces pathology. Currently, no treatments that increase utrophin protein expression exist. However, exercise increases utrophin mRNA expression in healthy humans. Therefore, the purpose was to determine whether exercise increases utrophin protein expression in dystrophic muscle. METHODS: Utrophin protein was measured in the quadriceps and soleus muscles of mdx mice after 12 weeks of voluntary wheel running exercise or sedentary controls. Muscle pathology was measured in the quadriceps. RESULTS: Exercise increased utrophin protein expression 334 ± 63% in the quadriceps relative to sedentary controls. Exercise increased central nuclei 4 ± 1% but not other measures of pathology. CONCLUSIONS: Exercise may be an intervention that increases utrophin expression in patients with DMD.


Assuntos
Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Condicionamento Físico Animal/fisiologia , Utrofina/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa