Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943343

RESUMO

Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle.

2.
RNA ; 25(5): 539-556, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30770398

RESUMO

The interferon-inducible protein kinase R (PKR) is a key component of host innate immunity that restricts viral replication and propagation. As one of the four eIF2α kinases that sense diverse stresses and direct the integrated stress response (ISR) crucial for cell survival and proliferation, PKR's versatile roles extend well beyond antiviral defense. Targeted by numerous host and viral regulators made of RNA and proteins, PKR is subject to multiple layers of endogenous control and external manipulation, driving its rapid evolution. These versatile regulators include not only the canonical double-stranded RNA (dsRNA) that activates the kinase activity of PKR, but also highly structured viral, host, and artificial RNAs that exert a full spectrum of effects. In this review, we discuss our deepening understanding of the allosteric mechanism that connects the regulatory and effector domains of PKR, with an emphasis on diverse structured RNA regulators in comparison to their protein counterparts. Through this analysis, we conclude that much of the mechanistic details that underlie this RNA-regulated kinase await structural and functional elucidation, upon which we can then describe a "PKR code," a set of structural and chemical features of RNA that are both descriptive and predictive for their effects on PKR.


Assuntos
Interações Hospedeiro-Patógeno/genética , RNA de Cadeia Dupla/genética , RNA não Traduzido/genética , Viroses/genética , eIF-2 Quinase/genética , Regulação Alostérica , Animais , Sequência de Bases , Sítios de Ligação , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Interferons/genética , Interferons/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/imunologia , RNA não Traduzido/química , RNA não Traduzido/imunologia , Viroses/imunologia , Viroses/virologia , Replicação Viral , eIF-2 Quinase/química , eIF-2 Quinase/imunologia
3.
Curr Opin Genet Dev ; 67: 67-76, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291060

RESUMO

Thousands of genes produce polyadenylated mRNAs that still contain one or more introns. These transcripts are known as retained intron RNAs (RI-RNAs). In the past 10 years, RI-RNAs have been linked to post-transcriptional alternative splicing in a variety of developmental contexts, but they can also be dead-end products fated for RNA decay. Here we discuss the role of intron retention in shaping gene expression programs, as well as recent evidence suggesting that the biogenesis and fate of RI-RNAs is regulated by nuclear organization. We discuss the possibility that proximity of RNA to nuclear speckles - biomolecular condensates that are highly enriched in splicing factors and other RNA binding proteins - is associated with choices ranging from efficient co-transcriptional splicing, export and stability to regulated post-transcriptional splicing and possible vulnerability to decay.


Assuntos
Íntrons/genética , Precursores de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Processamento Alternativo/genética , Núcleo Celular/genética , Regulação da Expressão Gênica/genética , Humanos , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/genética
4.
Cell Host Microbe ; 29(9): 1421-1436.e7, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34384537

RESUMO

The HIV-1 virion structural polyprotein, Gag, is directed to particle assembly sites at the plasma membrane by its N-terminal matrix (MA) domain. MA also binds to host tRNAs. To understand the molecular basis of MA-tRNA interaction and its potential function, we present a co-crystal structure of HIV-1 MA-tRNALys3 complex. The structure reveals a specialized group of MA basic and aromatic residues preconfigured to recognize the distinctive structure of the tRNA elbow. Mutational, cross-linking, fluorescence, and NMR analyses show that the crystallographically defined interface drives MA-tRNA binding in solution and living cells. The structure indicates that MA is unlikely to bind tRNA and membrane simultaneously. Accordingly, single-amino-acid substitutions that abolish MA-tRNA binding caused striking redistribution of Gag to the plasma membrane and reduced HIV-1 replication. Thus, HIV-1 exploits host tRNAs to occlude a membrane localization signal and control the subcellular distribution of its major structural protein.


Assuntos
Antígenos HIV/metabolismo , Domínios Proteicos/fisiologia , RNA de Transferência/metabolismo , Montagem de Vírus/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Células HEK293 , HIV-1/genética , Células HeLa , Humanos , RNA de Transferência/genética , Proteínas de Ligação a RNA/metabolismo
5.
ACS Omega ; 5(17): 9830-9838, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391470

RESUMO

The compound dimethyl sulfide (DMS) links terrestrial and oceanic sulfur with the atmosphere because of its volatility. Atmospheric DMS is responsible for cloud formation and radiation backscattering and has been implicated in climate control mitigation. The enzyme DMS C-monooxygenase degrades DMS and has been classified as a two-component FMNH2-dependent monooxygenase. This enzyme requires a flavin reductase B subunit to supply electrons to the monooxygenase A subunit where DMS conversion occurs. One form of the enzyme from Hyphomicrobium sulfonivorans has been isolated and characterized. In this work, a putative DMS C-monooxygenase has been identified with bioinformatics in Arthrobacter globiformis. We report the expression, purification, and characterization of the DmoB flavin reductase subunit, termed DmoB, from A. globiformis. Data support DmoB preference and optimal activity for the cosubstrates flavin mononucleotide (FMN) and NADH. FMN binds at a 1:1 stoichiometry with high affinity (K d = 1.11 µM). The reductase is able to generate product with the A subunit from H. sulfonivorans expressed in Escherichia coli, albeit at a lower turnover than the natively expressed enzyme. No static protein-protein interactions were observed under the conditions tested between the two subunits. These results provide new details in the classification of enzymes involved in the sulfur cycling pathway and emerging forms of the enzyme DMS monooxygenase.

6.
Nat Commun ; 10(1): 2871, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253805

RESUMO

Adenovirus Virus-Associated (VA) RNAs are the first discovered viral noncoding RNAs. By mimicking double-stranded RNAs (dsRNAs), the exceptionally abundant, multifunctional VA RNAs sabotage host machineries that sense, transport, process, or edit dsRNAs. How VA-I suppresses PKR activation despite its strong dsRNA character, and inhibits the crucial antiviral kinase to promote viral translation, remains largely unknown. Here, we report a 2.7 Å crystal structure of VA-I RNA. The acutely bent VA-I features an unusually structured apical loop, a wobble-enriched, coaxially stacked apical and tetra-stems necessary and sufficient for PKR inhibition, and a central domain pseudoknot that resembles codon-anticodon interactions and prevents PKR activation by VA-I. These global and local structural features collectively define VA-I as an archetypal PKR inhibitor made of RNA. The study provides molecular insights into how viruses circumnavigate cellular rules of self vs non-self RNAs to not only escape, but further compromise host innate immunity.


Assuntos
Conformação de Ácido Nucleico , RNA de Cadeia Dupla/química , RNA Viral/química , Adenovírus Humanos/genética , Sequência de Bases , Cristalização , Luz , RNA de Cadeia Dupla/genética , RNA Viral/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa