RESUMO
Circulating tumor cells (CTCs) were introduced as biomarkers more than 10 years ago, but capture of viable CTCs at high purity from peripheral blood of cancer patients is still a major technical challenge. Here, we report a novel microfluidic platform designed for marker independent capture of CTCs. The Parsortix™ cell separation system provides size and deformability-based enrichment with automated staining for cell identification, and subsequent recovery (harvesting) of cells from the device. Using the Parsortix™ system, average cell capture inside the device ranged between 42% and 70%. Subsequent harvest of cells from the device ranged between 54% and 69% of cells captured. Most importantly, 99% of the isolated tumor cells were viable after processing in spiking experiments as well as after harvesting from patient samples and still functional for downstream molecular analysis as demonstrated by mRNA characterization and array-based comparative genomic hybridization. Analyzing clinical blood samples from metastatic (n = 20) and nonmetastatic (n = 6) cancer patients in parallel with CellSearch(®) system, we found that there was no statistically significant difference between the quantitative behavior of the two systems in this set of twenty six paired separations. In conclusion, the epitope independent Parsortix™ system enables the isolation of viable CTCs at a very high purity. Using this system, viable tumor cells are easily accessible and ready for molecular and functional analysis. The system's ability for enumeration and molecular characterization of EpCAM-negative CTCs will help to broaden research into the mechanisms of cancer as well as facilitating the use of CTCs as "liquid biopsies."
Assuntos
Dispositivos Lab-On-A-Chip , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Separação Celular/instrumentação , Forma Celular , Tamanho Celular , Sobrevivência Celular , HumanosRESUMO
BACKGROUND: Identification of promising biomarkers that predict the prognosis of patients with breast cancer is needed. In this study, we hypothesised that the expression of the epithelial-mesenchymal transition-related biomarker plastin3 (PLS3) in peripheral blood could be a prognostic factor in breast cancer. METHODS: We examined PLS3 expression in breast cancer cell lines with epithelial and mesenchymal traits and in circulating tumour cells (CTCs) obtained from the peripheral blood of breast cancer patients. We investigated PLS3 expression in the peripheral blood of 594 patients with breast cancer to evaluate the clinical significance of PLS3 expression. RESULTS: Robust PLS3 expression was observed in different breast cancer cell lines (Hs578t, MCF-7, MDA-MB-468, and MDA-MB-231) as well as in a bone marrow derived cancer cell line (BC-M1). In both the training (n=298) and validation (n=296) sets, PLS3 expression was observed in CTCs of patients with breast cancer. PLS3-positive patients showed significantly poorer overall and disease-free survival than PLS3-negative patients (P=0.0001 and 0.003, respectively). Subset analysis revealed that this prognostic biomarker was relevant in patients with stage I-III cancer, particularly in patients with luminal-type and triple-negative-type tumours. CONCLUSIONS: These data demonstrated that PLS3 was expressed in CTCs undergoing the epithelial-mesenchymal transition in patients with breast cancer. Furthermore, PLS3 may be an excellent biomarker for identifying groups at risk of recurrence or with a poor prognosis.