Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 36(20): 5492-5501, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32364387

RESUMO

Physical confinement of polymers not only affects their structure but also modifies their effective interaction profiles. In this article, we investigate the nature of graphene-adsorbed poly(amidoamine) (PAMAM) dendrimers' interactions using fully atomistic molecular dynamics simulations. Using the umbrella sampling technique, we calculate the potential of mean force (PMF) profiles for the interaction between two graphene-adsorbed PAMAM dendrimers of generations 3 and 4 as a function of their protonation levels. We find that the attractive PMF profile observed for the interaction between two nonprotonated (high pH) PAMAM dendrimers in bulk becomes repulsive upon adsorption. Also, the repulsive interdendrimer interactions known in bulk for the protonated dendrimers become enhanced for the adsorbed case. We further explain these weakened interactions by explicitly showing that the dendrimer-graphene interaction is an order of magnitude larger than the dendrimer-dendrimer bulk interaction. Using the force integration method, we obtain the contributions from various subinteractions present in the system, that is, dendrimer-water, dendrimer-ions, dendrimer-graphene, and dendrimer-dendrimer to the total PMF. From these contributions, we conclude that the reduced dendrimer-dendrimer interactions in the adsorbed case, as compared to those in bulk, lead to the enhanced repulsive effective interdendrimer interactions. Our PMF profiles fit well with the sum of exponential and Gaussian functions, proposed in the bulk interdendrimer interaction study. We hope the current results provide the microscopic origin of how adsorption weakens the interpolymer interactions in general.

2.
Langmuir ; 35(28): 9219-9232, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31274328

RESUMO

We investigate the thermodynamics of the binding of a poly(amidoamine) dendrimer to an uncharged graphene sheet as a function of the pH level using umbrella sampling simulations and a mean-field theory for generations three and four. We find that the dendrimer strongly binds to the graphene sheet ( O (100) kcal/mol) from our potential of mean force (PMF) calculations. In specific, we find that the dendrimer binds the most at neutral pH (∼7) and the least at low pH (∼4). We explain this nonmonotonic nature of the dendrimer's adsorption by studying the interactions contributing to the PMF, i.e., the dendrimer-graphene, dendrimer-water, and dendrimer-ion interactions. We also corroborate our PMF calculations with molecular mechanics generalized Born surface area analysis and free energies obtained from a mean-field theory of Flory-Huggins-Debye-Hückel type [ Muthukumar , M. , J. Chem. Phys. 2010 , 132 , 084901 ], including electrostatic interactions. We find that the van der Waals interactions between the dendrimer and the graphene alone cannot capture the accurate trends in the binding free energies (BEs) as a function of pH. The solvent and the counterions present in the system are also found to have a major influence on these trends. We demonstrate that the dendrimer-graphene and dendrimer-water interactions become favorable, whereas the dendrimer-ion interaction becomes unfavorable, as the dendrimer binds to graphene. These opposing effects lead to the observed nonmonotonicity in the BE trends. Our theoretical model also reproduces these trends in the subinteractions contributing to the PMF. To the best of our knowledge, this is a novel attempt where an equivalence between theory and simulations is made in the context of the dendrimer's adsorption.

3.
Soft Matter ; 14(10): 1925-1938, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29473069

RESUMO

The adsorption of PAMAM dendrimers at solid/water interfaces has been extensively studied, and is mainly driven by electrostatic and van der Waals interactions between the substrate and the dendrimers. However, the pH dependence of the adsorption driven predominantly by the van der Waals interactions is poorly explored, although it is crucial for investigating the potentiality of these dendrimers in supercapacitors and surface patterning. Motivated by this aspect, we have studied the adsorption behavior of PAMAM dendrimers of generations 2 (G2) to 5 (G5) with pH and salt concentration variation, on a charge neutral graphene substrate, using fully atomistic molecular dynamics simulations. The instantaneous snapshots from our simulations illustrate that the dendrimers deform significantly from their bulk structures. Based on various structural property calculations, we classify the adsorbed dendrimer morphologies into five categories and map them to a phase diagram. Interestingly, the morphologies we report here have striking analogies with those reported in star-polymer adsorption studies. From the fractional contacts and other structural property analyses we find that the deformations are more pronounced at neutral pH as compared to high and low pH. Higher generation dendrimers resist deformation following the deformation trend, G2 > G3 > G4 > G5 at any given pH level. As the adsorption here is mainly driven by van der Waals interactions, we observe no desorption of the dendrimers as the salt molarity is increased, unlike that reported in the electrostatically driven adsorption studies.

4.
Macromolecules ; 57(10): 4826-4832, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38910846

RESUMO

Well-characterized single-chain nanoparticles (SCNPs), synthesized from a linear polystyrene precursor through an intramolecular [4 + 4] thermal cycloaddition cross-linking reaction in dilute conditions, were added to entangled polystyrene melts at different concentrations. Starting from the pure linear melt, which is much more viscous than the melt of SCNPs, the zero-shear viscosity increased upon the addition of nanoparticles and reached a maximum before eventually dropping to the value of the SCNP melt. Molecular simulations reveal the origin of this unexpected behavior, which is the interplay of the very different compositional dependences of the dynamics of the two components. The SCNPs become much slower than the linear chains as their concentration decreases because they are threaded by the linear chains, reaching a maximum viscosity which is higher than that of the linear chains at a fraction of about 20%. This behavior is akin to that of single-loop ring polymers when added to linear matrices. This finding provides insights into the design and use of SCNPs as effective entropic viscosity modifiers of polymers and contributes to the discussion of the physics of loopy structures.

5.
J Chem Theory Comput ; 14(7): 3825-3839, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29812928

RESUMO

The understanding of dendrimer interactions with cell membranes has great importance in drug/gene delivery based therapeutics. Although molecular simulations have been used to understand the nature of dendrimer interactions with lipid membranes, its dependency on available force field parameters is poorly understood. In this study, we have carried out fully atomistic molecular dynamics (MD) simulations of a protonated G3 poly(amido amine) (PAMAM) dendrimer-dimyristoylphosphatidylcholine (DMPC) lipid bilayer complex using three different force fields (FFs) namely, CHARMM, GAFF, and GROMOS in the presence of explicit water to understand the structure of the lipid-dendrimer complex and nature of their interaction. CHARMM and GAFF dendrimers initially in contact with the lipid head groups were found to move away from the lipid bilayer during the course of simulation; however, the dendrimer remained strongly bound to the lipid head groups with the GROMOS FF. Potential of the mean force (PMF) computations of the dendrimer along the bilayer normal showed a repulsive barrier (∼20 kcal/mol) between dendrimer and lipid bilayer in the case of CHARMM and GAFF force fields. In contrast, an attractive interaction (∼40 kcal/mol) is obtained with the GROMOS force field, consistent with experimental observations of membrane binding observed with lower generation G3 PAMAM dendrimers. This difference with the GROMOS dendrimer is attributed to the strong dendrimer-lipid interaction and lowered surface hydration of the dendrimer. Assessing the role of solvent, we find that the CHARMM and GAFF dendrimers strongly bind to the lipid bilayer with an implicit solvent (Generalized Born) model, whereas binding is not observed with explicit water (TIP3P). The opposing nature of dendrimer-membrane interactions in the presence of explicit and implicit solvents demonstrates that hydration effects play an important role in modulating the dendrimer-lipid interaction warranting a case for refinement of the existing dendrimer/lipid force fields.


Assuntos
Dendrímeros/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Solubilidade , Solventes/química , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa