Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 17(6): 484-498, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29784994

RESUMO

Vaccines and immunotherapies have provided enormous improvements for public health, but there are fundamental disconnects between where most studies are performed-in cell culture and animal models-and the ultimate application in humans. Engineering immune tissues and organs, such as bone marrow, thymus, lymph nodes and spleen, could be instrumental in overcoming these hurdles. Fundamentally, designed immune tissues could serve as in vitro tools to more accurately study human immune function and disease, while immune tissues engineered for implantation as next-generation vaccines or immunotherapies could enable direct, on-demand control over generation and regulation of immune function. In this Review, we discuss recent interdisciplinary strategies that are merging materials science and immunology to create engineered immune tissues in vitro and in vivo. We also highlight the hurdles facing these approaches and the need for comparison to existing clinical options, relevant animal models, and other emerging technologies.


Assuntos
Imunidade , Engenharia Tecidual/métodos , Animais , Humanos , Análise Serial de Tecidos
2.
mBio ; : e0250623, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937842

RESUMO

Lipid nanoparticle (LNP)-encapsulated mRNAs have emerged as effective vaccination tools to stimulate immunity. The most common application of this technology is to deliver mRNAs that encode antigenic proteins to dendritic cells (DCs), which then stimulate antigen-specific lymphocyte responses. It is unclear whether other immunostimulatory DC activities necessary for vaccine efficacy, beyond antigen presentation, can be induced via mRNA-encoded proteins. Herein, we report an mRNA encoding a self-DNA reactive variant of the enzyme cyclic GMP-AMP synthase (cGAS), known as cGAS∆N. cGAS∆N produces the cyclic dinucleotide cGAMP upon binding intra-mitochondrial DNA. cGAMP binds the protein STING, which activates innate immune responses that stimulate T cells. We found that when delivered to DCs via LNPs, mRNA-encoded cGAS∆N induced the upregulation of chemokine receptors, T cell costimulatory molecules, major histocompatibility complex proteins, pro-inflammatory cytokines and type I interferons from murine and human DCs. These activities exceeded the immunostimulatory activities of mRNA-encoded antigens delivered via LNPs. Co-immunization of mice with antigen-LNPs and cGAS∆N-LNPs led to the robust production of antigen-specific IFNγ-producing T cells. These T cell responses were durable and circulated through the lymphatics, blood, and lungs. Immunizations with antigen-LNPs alone, akin to what are used in the clinic, stimulated weak and transient T cell responses. Antibody responses to antigen-LNPs were biased towards type I isotypes when co-injected with cGAS∆N-LNPs, as compared to immunizations with antigen-LNPs alone. These findings establish the enzyme cGAS∆N as a catalytic adjuvant, which may prove useful in enhancing the immunogenicity of nucleic acid-based vaccines. IMPORTANCE Nucleic acid-based vaccines hold promise in preventing infections and treating cancer. The most common use of this technology is to encode antigenic proteins on mRNAs that are delivered to cells via lipid nanoparticle (LNP) formulations. In this study, we discovered that immunostimulatory proteins can also be encoded on mRNAs in LNPs. We found that an active mutant of the enzyme cGAS, referred to as cGAS∆N, acts as a catalytic adjuvant in LNP-encapsulated mRNA vaccines. The delivery of cGAS∆N mRNA via LNPs in combination with antigen mRNA-LNPs led to durable antigen-specific IFNγ-producing T cells that exceeded the efficiency of antigen-LNPs similar to those currently used in the clinic. This strategy did not compromise B cell responses; rather it induced Th1-biased antibody isotypes. This work unveils new vaccine design strategies using mRNA-encoded catalytic adjuvants that could be ideal for generating CD8+ T cell and B cell responses for immunotherapies.

3.
Nat Commun ; 14(1): 681, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755035

RESUMO

Antigen-specific tolerance is a key goal of experimental immunotherapies for autoimmune disease and allograft rejection. This outcome could selectively inhibit detrimental inflammatory immune responses without compromising functional protective immunity. A major challenge facing antigen-specific immunotherapies is ineffective control over immune signal targeting and integration, limiting efficacy and causing systemic non-specific suppression. Here we use intra-lymph node injection of diffusion-limited degradable microparticles that encapsulate self-antigens with the immunomodulatory small molecule, rapamycin. We show this strategy potently inhibits disease during pre-clinical type 1 diabetes and allogenic islet transplantation. Antigen and rapamycin are required for maximal efficacy, and tolerance is accompanied by expansion of antigen-specific regulatory T cells in treated and untreated lymph nodes. The antigen-specific tolerance in type 1 diabetes is systemic but avoids non-specific immune suppression. Further, microparticle treatment results in the development of tolerogenic structural microdomains in lymph nodes. Finally, these local structural and functional changes in lymph nodes promote memory markers among antigen-specific regulatory T cells, and tolerance that is durable. This work supports intra-lymph node injection of tolerogenic microparticles as a powerful platform to promote antigen-dependent efficacy in type 1 diabetes and allogenic islet transplantation.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Humanos , Tolerância Imunológica , Autoantígenos , Linfonodos/patologia , Sirolimo
4.
Neurosci Lett ; 786: 136804, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35843471

RESUMO

In the primary visual cortex (V1) inhibitory interneurons form a local circuit with excitatory pyramidal cells to produce distinct receptive field properties. Parvalbumin-expressing interneurons (Pvalb+) are the most common subclass of V1 interneurons, and studies of orientation tuning indicate they shape pyramidal stimulus selectivity by balancing excitation with inhibition relative to the spike threshold. The iceberg effect, where subthreshold responses have broader tuning than spiking responses, predicts that other receptive field properties besides orientation tuning should also be affected by this balance mediated by Pvalb+ cells. To test this, we measured receptive field size and visual latency of pyramidal cells while Pvalb+ activity was optogenetically increased. We found that amplifying Pvalb+ input to pyramidal cells significantly increased their latency and decreased their receptive field size, which corroborates the proposed role of Pvalb+ interneurons in sculpting pyramidal tuning by controlling cortical gain.


Assuntos
Parvalbuminas , Córtex Visual , Animais , Interneurônios/metabolismo , Camundongos , Inibição Neural/fisiologia , Neurônios/metabolismo , Parvalbuminas/metabolismo , Córtex Visual Primário , Córtex Visual/fisiologia
5.
Biomater Sci ; 10(16): 4612-4626, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35796247

RESUMO

Recently approved cancer immunotherapies - including CAR-T cells and cancer vaccination, - show great promise. However, these technologies are hindered by the complexity and cost of isolating and engineering patient cells ex vivo. Lymph nodes (LNs) are key tissues that integrate immune signals to coordinate adaptive immunity. Directly controlling the signals and local environment in LNs could enable potent and safe immunotherapies without cell isolation, engineering, and reinfusion. Here we employ intra-LN (i.LN.) injection of immune signal-loaded biomaterial depots to directly control cancer vaccine deposition, revealing how the combination and geographic distribution of signals in and between LNs impact anti-tumor response. We show in healthy and diseased mice that relative proximity of antigen and adjuvant in LNs - and to tumors - defines unique local and systemic characteristics of innate and adaptive response. These factors ultimately control survival in mouse models of lymphoma and melanoma. Of note, with appropriate geographic signal distributions, a single i.LN. vaccine treatment confers near-complete survival to tumor challenge and re-challenge 100 days later, without additional treatments. These data inform design criteria for immunotherapies that leverage biomaterials for loco-regional LN therapy to generate responses that are systemic and specific, without systemically exposing patients to potent or immunotoxic drugs.


Assuntos
Vacinas Anticâncer , Melanoma , Animais , Sinais (Psicologia) , Linfonodos , Melanoma/terapia , Camundongos , Resultado do Tratamento , Vacinação
6.
Front Bioeng Biotechnol ; 8: 609577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33644005

RESUMO

Therapies for autoimmune diseases such as multiple sclerosis and diabetes are not curative and cause significant challenges for patients. These include frequent, continued treatments required throughout the lifetime of the patient, as well as increased vulnerability to infection due to the non-specific action of therapies. Biomaterials have enabled progress in antigen-specific immunotherapies as carriers and delivery vehicles for immunomodulatory cargo. However, most of this work is in the preclinical stage, where small dosing requirements allow for on-demand preparation of immunotherapies. For clinical translation of these potential immunotherapies, manufacturing, preservation, storage, and stability are critical parameters that require greater attention. Here, we tested the stabilizing effects of excipients on the lyophilization of polymeric microparticles (MPs) designed for autoimmune therapy; these MPs are loaded with peptide self-antigen and a small molecule immunomodulator. We synthesized and lyophilized particles with three clinically relevant excipients: mannitol, trehalose, and sucrose. The biophysical properties of the formulations were assessed as a function of excipient formulation and stage of addition, then formulations were evaluated in primary immune cell culture. From a manufacturing perspective, excipients improved caking of lyophilized product, enabled more complete resuspension, increased product recovery, and led to smaller changes in MP size and size distribution over time. Cocultures of antigen-presenting cells and self-reactive T cells revealed that MPs lyophilized with excipients maintained tolerance-inducing function, even after significant storage times without refrigeration. These data demonstrate that excipients can be selected to drive favorable manufacturing properties without impacting the immunologic properties of the tolerogenic MPs.

7.
J Tissue Eng Regen Med ; 12(1): 285-295, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28600807

RESUMO

With insufficient options to meet the clinical demand for cornea transplants, one emerging area of emphasis is on cornea tissue engineering. In the present study, the goal was to combine the corneal stroma and epithelium into one coculture system, to monitor both human corneal stromal stem cell (hCSSC) and human corneal epithelial cell (hCE) growth and differentiation into keratocytes and differentiated epithelium in these three-dimensional tissue systems in vitro. Coculture conditions were first optimized, including the medium, air-liquid interface culture, and surface topography and chemistry of biomaterial scaffold films based on silk protein. The silk was used as scaffolding for both stromal and epithelial tissue layers because it is cell compatible, can be surface patterned, and is optically clear. Next, the effects of proliferating and differentiating hCEs and hCSSCs were studied in this in vitro system, including the effects on cell proliferation, matrix formation by immunochemistry, and gene expression by quantitative reverse transcription-polymerase chain reaction. The incorporation of both cell types into the coculture system demonstrated more complete differentiation and growth for both cell types compared to the corneal stromal cells and corneal epithelial cells alone. Silk films for corneal epithelial culture were optimized to combine a 4.0-µm-scale surface pattern with bulk-loaded collagen type IV. Differentiation of each cell type was in evidence based on increased expression of corneal stroma and epithelial proteins and transcript levels after 6 weeks in coculture on the optimized silk scaffolds.


Assuntos
Técnicas de Cocultura/métodos , Substância Própria/citologia , Epitélio Corneano/citologia , Seda/farmacologia , Células-Tronco/citologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Fenótipo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Engenharia Tecidual
8.
AAPS J ; 19(4): 1175-1185, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28484962

RESUMO

Autoimmune disease occurs when the immune system incorrectly targets the body's own tissue. Inflammatory CD4+ T cell phenotypes, such as TH1 and TH17, are key drivers of this attack. Recent studies demonstrate treatment with rapamycin-a key inhibitor of the mTOR pathway-can skew T cell development, moving T cell responses away from inflammatory phenotypes and toward regulatory T cells (TREGS). TREGS are important in inducing and maintaining tolerance to self-antigens, creating new potential to treat autoimmune diseases more effectively and specifically. Next generation analogs of rapamycin, such as everolimus and temsirolimus, confer increased potency with reduced toxicity, but are understudied in the context of autoimmunity. Further, these drugs are still broadly-acting and require frequent treatment due to short half-lives. Thus, there is strong interest in harnessing the unique properties of biomaterials-controlled drug release and targeting, for example, to improve autoimmune therapies. Using second generation mTOR inhibitors and rapamycin, we prepared sets of degradable polymer particles from poly(lactide-co-glycolide). We then used these materials to assess physicochemical properties and the ability to control autoimmune inflammation in a primary cell co-culture model. Treatment with particle formulations resulted in significant dose-dependent decreases in dendritic cell activation, T cell proliferation, inflammatory cytokines, and frequencies of inflammatory TH1 phenotypes. Considering the current limitations of rapamycin, and the potential of next-generation analogs, this work provides a screening platform for biomaterials and sets the stage for in vivo evaluation, where delivery kinetics, stability, and targeting could improve autoimmune therapies through biomaterial-enabled delivery.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Imunossupressores/farmacologia , Inflamação/prevenção & controle , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Linfócitos T CD4-Positivos/imunologia , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos C57BL
9.
J Control Release ; 263: 151-161, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28257991

RESUMO

An important goal for improving vaccine and immunotherapy technologies is the ability to provide further control over the specific phenotypes of T cells arising from these agents. Along these lines, frequent administration of rapamycin (Rapa), a small molecule inhibitor of the mammalian target of rapamycin (mTOR), exhibits a striking ability to polarize T cells toward central memory phenotypes (TCM), or to suppress immune function, depending on the concentrations and other signals present during administration. TCM exhibit greater plasticity and proliferative capacity than effector memory T cells (TEFF) and, therefore, polarizing vaccine-induced T cells toward TCM is an intriguing strategy to enhance T cell expansion and function against pathogens or tumors. Here we combined biodegradable microparticles encapsulating Rapa (Rapa MPs) with vaccines composed of soluble peptide antigens and molecular adjuvants to test if this approach allows polarization of differentiating T cells toward TCM. We show Rapa MPs modulate DC function, enhancing secretion of inflammatory cytokines at very low doses, and suppressing function at high doses. While Rapa MP treatment reduced - but did not stop - T cell proliferation in both CD4+ and CD8+ transgenic T cell co-cultures, the expanding CD8+ T cells differentiated to higher frequencies of TCM at low doses of MP Rapa MPs. Lastly, we show in mice that local delivery of Rapa MPs to lymph nodes during vaccination either suppresses or enhances T cell function in response to melanoma antigens, depending on the dose of drug in the depots. In particular, at low Rapa MP doses, vaccines increased antigen-specific TCM, resulting in enhanced T cell expansion measured during subsequent booster injections over at least 100days.


Assuntos
Sirolimo/administração & dosagem , Linfócitos T/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Antígenos/administração & dosagem , Linhagem Celular Tumoral , Plasticidade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Preparações de Ação Retardada/administração & dosagem , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Proteínas de Membrana/administração & dosagem , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito , Ovalbumina/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Vacinas/administração & dosagem
10.
Discov Med ; 21(117): 403-10, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27355336

RESUMO

Autoimmune diseases occur when cells of the adaptive immune system incorrectly recognize and attack "self" tissues. Importantly, the proliferation and differentiation of these cells is triggered and controlled by interactions with antigen presenting cells (APCs), such as dendritic cells. Thus, modulating the signals transduced by APCs (e.g., cytokines, costimulatory surface proteins) has emerged as a promising strategy to promote tolerance for diseases such as multiple sclerosis, type 1 diabetes, and lupus. However, many approaches have been hindered by non-specific activity of immunosuppressive or immunoregulatory cues, following systemic administration of soluble factors via traditional injections routes (e.g., subcutaneous, intravenous). Biomaterials offer a unique opportunity to control the delivery of tolerogenic signals in vivo via properties such as controlled particle size, tunable release kinetics, and co-delivery of multiple classes of cargo. In this review, we highlight recent reports that exploit these properties of biomaterials to target APCs and promote tolerance via three strategies, i) passive or active targeting of particulate carriers to APCs, ii) biomaterial-mediated control over antigen localization and processing, and iii) targeted delivery of encapsulated or adsorbed immunomodulatory signals. These reports represent exciting advances toward the goal of more effective therapies for autoimmune diseases, without the broad suppressive effects associated with current clinically-approved therapies.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/terapia , Tolerância Imunológica/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Lúpus Eritematoso Sistêmico/terapia , Esclerose Múltipla/terapia , Animais , Autoantígenos/efeitos dos fármacos , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Bioengenharia/métodos , Diferenciação Celular/efeitos dos fármacos , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/química , Imunoterapia/métodos , Imunoterapia/tendências , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa