Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 21(24): 3500-3503, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32750193

RESUMO

One promising strategy to combat antibiotic-resistant bacteria is to develop compounds that block bacterial defenses against antibacterial conditions produced by the innate immune system. Salmonella enterica, which causes food-borne gastroenteritis and typhoid fever, requires histidine kinases (HKs) to resist innate immune defenses such as cationic antimicrobial peptides (CAMPs). Herein, we report that 2-aminobenzothiazoles block histidine kinase-dependent phenotypes in Salmonella enterica serotype Typhimurium. We found that 2-aminobenzothiazoles inhibited growth under low Mg2+ , a stressful condition that requires histidine kinase-mediated responses, and decreased expression of the virulence genes pagC and pagK. Furthermore, we discovered that 2-aminobenzothiazoles weaken Salmonella's resistance to polymyxin B and polymyxin E, which are last-line antibiotics and models for host defense CAMPs. These findings raise the possibilities that 2-aminobenzothiazoles can block HK-mediated bacterial defenses and can be used in combination with polymyxins to treat infections caused by Salmonella.


Assuntos
Antibacterianos/farmacologia , Benzotiazóis/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Polimixinas/farmacologia , Salmonella enterica/efeitos dos fármacos , Antibacterianos/química , Benzotiazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Polimixinas/química , Salmonella enterica/genética , Virulência/efeitos dos fármacos
2.
J Org Chem ; 81(14): 5949-62, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27295299

RESUMO

The mechanism of bismuth(V)-mediated thioglycoside activation was examined using reaction kinetics and quantum chemical reaction models. NMR experiments show an unusual nonlinear growth/decay curve for the glycosylation reaction. Further studies suggest an anomeric inversion of the ß-glycoside donor to the α-donor during its activation, even in the presence of a neighboring 2-position acetate. Interestingly, in situ anomerization was not observed in the activation of an α-glycoside donor, and this anomer also showed faster reaction times and higher product diastereoselectivites. Density functional theory calculations identify the structure of the promoter triphenyl bismuth ditriflate, [Ph3Bi(OTf)2, 1], in solution and map out the energetics of its interactions with the two thioglycoside anomers. These calculations suggest that 1 must bind the thiopropyl arm to induce triflate loss. The computational analyses also show that, unlike most O-glycosides, the ß- and α-donor S-glycosides are similar in energy. One energetically reasonable anomerization pathway of the donors is an SN1-like mechanism promoted by forming a bismuth-sulfonium adduct with the Lewis acidic Bi(V) for the formation of an oxacarbenium intermediate. Finally, the computed energy compensations needed to form these α vs ß Bi adducts is a possible explanation for the differential reactivity of these donors.

3.
Chem Sci ; 14(19): 5028-5037, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37206395

RESUMO

The emergence of drug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), which are not susceptible to current antibiotics has necessitated the development of novel approaches and targets to tackle this growing challenge. Bacterial two-component systems (TCSs) play a central role in the adaptative response of bacteria to their ever-changing environment. They are linked to antibiotic resistance and bacterial virulence making the proteins of the TCSs, histidine kinases and response regulators, attractive for the development of novel antibacterial drugs. Here, we developed a suite of maleimide-based compounds that we evaluated against a model histidine kinase, HK853, in vitro and in silico. The most potent leads were then assessed for their ability to decrease the pathogenicity and virulence of MRSA, resulting in the identification of a molecule that decreased the lesion size caused by a methicillin-resistant S. aureus skin infection by 65% in a murine model.

4.
Angew Chem Int Ed Engl ; 52(32): 8441-5, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23813696
5.
Chem Sci ; 9(37): 7332-7337, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30542536

RESUMO

Pseudomonas aeruginosa infections have reached a "critical" threat status making novel therapeutic approaches required. Inhibiting key signaling enzymes known as the histidine kinases (HKs), which are heavily involved with its pathogenicity, has been postulated to be an effective new strategy for treatment. Herein, we demonstrate the potential of this approach with benzothiazole-based HK inhibitors that perturb multiple virulence pathways in the burn wound P. aeruginosa isolate, PA14. Specifically, our compounds significantly reduce the level of toxic metabolites generated by this organism that are involved in quorum-sensing and redox-balancing mechanisms. They also decrease the ability of this organism to swarm and attach to surfaces, likely by influencing their motility appendages. Quantitative transcription analysis of inhibitor-treated cultures showed substantial perturbations to multiple pathways including expression of response regulator GacA, the cognate partner of the "super regulator" of virulence, HK GacS, as well as flagella and pili formation. These promising results establish that blocking of bacterial signaling in P. aeruginosa has dramatic consequences on virulence behaviours, especially in the context of surface-associated infections.

6.
J Med Chem ; 60(19): 8170-8182, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28933546

RESUMO

Bacterial histidine kinases (HKs) are quintessential regulatory enzymes found ubiquitously in bacteria. Apart from their regulatory roles, they are also involved in the production of virulence factors and conferring resistance to various antibiotics in pathogenic microbes. We have previously reported compounds that inhibit multiple HKs by targeting the conserved catalytic and ATP-binding (CA) domain. Herein, we conduct a detailed structure-activity relationship assessment of adenine-based inhibitors using biochemical and docking methods. These studies have resulted in several observations. First, interaction of an inhibitor's amine group with the conserved active-site Asp is essential for activity and likely dictates its orientation in the binding pocket. Second, a N-NH-N triad in the inhibitor scaffold is highly preferred for binding to conserved Gly:Asp:Asn residues. Lastly, hydrophobic electron-withdrawing groups at several positions in the adenine core enhance potency. The selectivity of these inhibitors was tested against heat shock protein 90 (HSP90), which possesses a similar ATP-binding fold. We found that groups that target the ATP-lid portion of the catalytic domain, such as a six-membered ring, confer selectivity for HKs.


Assuntos
Adenina/química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Histidina Quinase/antagonistas & inibidores , Adenina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Ácido Aspártico/química , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa