RESUMO
Occlusal disharmony has been reported to be affected not only by cytokine and steroid hormone secretion and sympathetic activation in peripheral organs, but also by neurotransmitter release in the central nervous system. However, little is known about whether occlusal disharmony can decrease cognitive ability. We hypothesized that hyperocclusion decreases cognition via Alzheimer's disease-associated molecule expression in the brain. The present study is aimed to elucidate the relationships among occlusal disharmony, cytokine and cognitive-regulated molecule expression in the brain, and the impairment of learning and memory cognition. We examined the effect of hyperocclusion on the relationships among cytokine expression, cognitive suppressor molecules in the hippocampus, and cognition in behavior using a hyperocclusion mouse model. Hyperocclusion dramatically increased interleukin-1ß expression in the serum and hippocampus 1 week after hyperocclusal loading in 2-month-old mice, but no effects in 12-month-old mice. The social and long-term cognitive abilities of the 2-month-old mice were transiently downregulated close to the level of the 12-month-old mice 1 week after hyperocclusion and recovered to close to basal level via the expression of cognitive suppressor clearing proteins. The expression levels of amyloid-ß and phosphorylated tau were significantly upregulated 1 week after hyperocclusal loading in the hippocampus of 2-month-old mice but were constant in 12-month-old mice. Occlusal disharmony-induced interleukin-1ß expression may contribute to accumulation of cognitive suppressor molecules such as amyloid-ß and phosphorylated tau and activate their clearance proteins, resulting in protection against transient dementia in young but not older individuals.
Assuntos
Doença de Alzheimer/metabolismo , Cognição , Demência/prevenção & controle , Hipocampo/metabolismo , Má Oclusão/genética , Má Oclusão/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Comportamento Animal , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas tau/metabolismoRESUMO
BACKGROUND: Lectin-like oxidized low-density-lipoprotein receptor 1 (Lox-1) is the receptor for oxidized low-density lipoprotein (oxLDL), a mediator in dyslipidemia. Toll-like receptor (TLR)-2 and - 4 are receptors of lipopolysaccharide (LPS) from Porphyromonas gingivalis, a major pathogen of chronic periodontitis. Although some reports have demonstrated that periodontitis has an adverse effect on dyslipidemia, little is clear that the mechanism is explained the effects of dyslipidemia on osteoclastogenesis. We have hypothesized that osteoclast oxLDL has directly effect on osteoclasts (OCs), and therefore alveolar bone loss on periodontitis may be increased by dyslipidemia. The present study aimed to elucidate the effect of Lox-1 on osteoclastogenesis associated with TLRs in vitro. METHODS: Mouse bone marrow cells (BMCs) were stimulated with macrophage colony-stimulating factor into bone marrow macrophages (BMMs). The cells were also stimulated with synthetic ligands for TLR2 (Pam3CSK4) or TLR4 (Lipid A), with or without receptor activator of nuclear factor kappa-B ligand (RANKL), and assessed for osteoclastogenesis by tartrate-resistant acid phosphatase (TRAP) staining, immunostaining, western blotting, flow activated cell sorting (FACS) analysis, real-time polymerase chain reaction (PCR), and reverse transcription PCR. RESULTS: Lox-1 expression was significantly upregulated by Pam3CSK4 and Lipid A in BMCs (p < 0.05), but not in BMMs. FACS analysis identified that Pam3CSK4 upregulated RANK and Lox-1 expression in BMCs. TRAP-positive cells were not increased by stimulation with Pam3CSK4 alone, but were increased by stimulation with combination combined Pam3CSK and oxLDL. Expression of both Lox-1 and myeloid differentiation factor 88 (MyD88), an essential adaptor protein in the TLR signaling pathway, were suppressed by inhibitors of TLR2, TLR4 and mitogen-activated protein kinase (MAPK). CONCLUSIONS: This study supports that osteoclastogenesis is promoted under the coexistence of oxLDL by TLR2-induced upregulation of Lox-1 in BMCs. This indicates that periodontitis could worsen with progression of dyslipidemia.