Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(18): e2112979119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35471911

RESUMO

Internet-based scientific communities promise a means to apply distributed, diverse human intelligence toward previously intractable scientific problems. However, current implementations have not allowed communities to propose experiments to test all emerging hypotheses at scale or to modify hypotheses in response to experiments. We report high-throughput methods for molecular characterization of nucleic acids that enable the large-scale video game­based crowdsourcing of RNA sensor design, followed by high-throughput functional characterization. Iterative design testing of thousands of crowdsourced RNA sensor designs produced near­thermodynamically optimal and reversible RNA switches that act as self-contained molecular sensors and couple five distinct small molecule inputs to three distinct protein binding and fluorogenic outputs. This work suggests a paradigm for widely distributed experimental bioscience.


Assuntos
Crowdsourcing , RNA , Crowdsourcing/métodos , RNA/química , RNA/genética
2.
Acc Chem Res ; 49(9): 1903-10, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27526193

RESUMO

Affinity reagents that specifically bind to their target molecules are invaluable tools in nearly every field of modern biomedicine. Nucleic acid-based aptamers offer many advantages in this domain, because they are chemically synthesized, stable, and economical. Despite these compelling features, aptamers are currently not widely used in comparison to antibodies. This is primarily because conventional aptamer-discovery techniques such as SELEX are time-consuming and labor-intensive and often fail to produce aptamers with comparable binding performance to antibodies. This Account describes a body of work from our laboratory in developing advanced methods for consistently producing high-performance aptamers with higher efficiency, fewer resources, and, most importantly, a greater probability of success. We describe our efforts in systematically transforming each major step of the aptamer discovery process: selection, analysis, and characterization. To improve selection, we have developed microfluidic devices (M-SELEX) that enable discovery of high-affinity aptamers after a minimal number of selection rounds by precisely controlling the target concentration and washing stringency. In terms of improving aptamer pool analysis, our group was the first to use high-throughput sequencing (HTS) for the discovery of new aptamers. We showed that tracking the enrichment trajectory of individual aptamer sequences enables the identification of high-performing aptamers without requiring full convergence of the selected aptamer pool. HTS is now widely used for aptamer discovery, and open-source software has become available to facilitate analysis. To improve binding characterization, we used HTS data to design custom aptamer arrays to measure the affinity and specificity of up to ∼10(4) DNA aptamers in parallel as a means to rapidly discover high-quality aptamers. Most recently, our efforts have culminated in the invention of the "particle display" (PD) screening system, which transforms solution-phase aptamers into "aptamer particles" that can be individually screened at high-throughput via fluorescence-activated cell sorting. Using PD, we have shown the feasibility of rapidly generating aptamers with exceptional affinities, even for proteins that have previously proven intractable to aptamer discovery. We are confident that these advanced aptamer-discovery methods will accelerate the discovery of aptamer reagents with excellent affinities and specificities, perhaps even exceeding those of the best monoclonal antibodies. Since aptamers are reproducible, renewable, stable, and can be distributed as sequence information, we anticipate that these affinity reagents will become even more valuable tools for both research and clinical applications.


Assuntos
Aptâmeros de Nucleotídeos/química , Ensaios de Triagem em Larga Escala/métodos , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Dispositivos Lab-On-A-Chip
3.
Nat Nanotechnol ; 14(9): 866-873, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427748

RESUMO

RNA nanotechnology seeks to create nanoscale machines by repurposing natural RNA modules. The field is slowed by the current need for human intuition during three-dimensional structural design. Here, we demonstrate that three distinct problems in RNA nanotechnology can be reduced to a pathfinding problem and automatically solved through an algorithm called RNAMake. First, RNAMake discovers highly stable single-chain solutions to the classic problem of aligning a tetraloop and its sequence-distal receptor, with experimental validation from chemical mapping, gel electrophoresis, solution X-ray scattering and crystallography with 2.55 Å resolution. Second, RNAMake automatically generates structured tethers that integrate 16S and 23S ribosomal RNAs into single-chain ribosomal RNAs that remain uncleaved by ribonucleases and assemble onto messenger RNA. Third, RNAMake enables the automated stabilization of small-molecule binding RNAs, with designed tertiary contacts that improve the binding affinity of the ATP aptamer and improve the fluorescence and stability of the Spinach RNA in cell extracts and in living Escherichia coli cells.


Assuntos
RNA/química , Cristalografia por Raios X , Escherichia coli/química , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA de Plantas/química , RNA Ribossômico 16S/química , RNA Ribossômico 23S/química , Spinacia oleracea/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa