Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(24): e2300381, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36917928

RESUMO

Although being transition metals, the Fenton-inactive group 3-4 elements (Sc, Y, La, Ti, Zr, and Hf) can easily lose all the outermost s and d electrons, leaving behind ionic sites with nearly empty outermost orbitals that are stable but inactive for oxygen involved catalysis. Here, it is demonstrated that the dynamic coordination network can turn these commonly inactive ionic sites into platinum-like catalytic centers for the oxygen reduction reaction (ORR). Using density functional theory calculations, a macrocyclic ligand coordinated yttrium single-atom (YN4 ) moiety is identified, which is originally ORR inactive because of the too strong binding of hydroxyl intermediate, while it can be activated by an axial ligand X through the covalency competition between YX and YOH bonds. Strikingly, it is also found that the binding force of the axially coordinated ligand is an effective descriptor, and the chlorine ligand is screened out with an optimal binding force that behaves self-adaptively to facilitate each ORR intermediate steps by dynamically changing its YCl covalency. These experiments validate that the as-designed YN4 -Cl moieties embedded within the carbon framework exhibit a high half-wave potential (E1/2 = 0.85 V) in alkaline media, the same as that of the commercial Pt/C catalyst .

2.
Adv Mater ; 34(28): e2202714, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35522047

RESUMO

In nature, the oxygen reduction reaction (ORR) is catalyzed by cytochrome P450 (CYP) enzymes containing heme iron centers with an axial thiolate ligand (FeN4 -S), which are among the most finely developed catalysts by natural selection. However, the exceptional ORR activity and selectivity of CYP enzymes originate from their non-rigid and self-adaptive coordination network with molecular ligands, which sacrifices the stability of the active motifs under electrochemical reaction conditions. Here, a design strategy to circumvent this dilemma by incorporating Fe-N4 motifs into carbon matrices instead of the protein scaffold and replacing the axial molecular thiolate ligand with a stable tellurium cluster (Ten ) is demonstrated. Theoretical calculations indicate a moderate interaction between Fe 3d and Te 5p orbitals once n > 2, allowing the FeTe bond to dynamically change its strength to adaptively facilitate the intermediate steps during the ORR process, which renders FeN4 -Ten active sites with superior ORR activity. This adaptive behavior mimics the conformational dynamics of an enzyme during the reaction, but retains the stability nature as a heterogeneous catalyst. The experiments validate that the as-designed catalyst with a characterized FeN4 -Ten structure outperforms the commercial Pt/C catalyst both on activity and stability.


Assuntos
Metaloides , Telúrio , Ligantes , Oxirredução , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa