Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Neurochem Res ; 49(1): 184-198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702890

RESUMO

The inflammatory process mediated by nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain comprising 3 (NLRP3) inflammasome plays a predominant role in the neurological dysfunction following traumatic brain injury (TBI). SB332235, a highly selective antagonist of chemokine receptor 2 (CXCR2), has been demonstrated to exhibit anti-inflammatory properties and improve neurological outcomes in the central nervous system. We aimed to determine the neuroprotective effects of SB332235 in the acute phase after TBI in mice and to elucidate its underlying mechanisms. Male C57BL/6J animals were exposed to a controlled cortical impact, then received 4 doses of SB332235, with the first dose administered at 30 min after TBI, followed by additional doses at 6, 24, and 30 h. Neurological defects were assessed by the modified neurological severity score, while the motor function was evaluated using the beam balance and open field tests. Cognitive performance was evaluated using the novel object recognition test. Brain tissues were collected for pathological, Western blot, and immunohistochemical analyses. The results showed that SB332235 significantly ameliorated TBI-induced deficits, including motor and cognitive impairments. SB332235 administration suppressed expression of both CXCL1 and CXCR2 in TBI. Moreover, SB332235 substantially mitigated the augmented expression levels and activation of the NLRP3 inflammasome within the peri-contusional cortex induced by TBI. This was accompanied by the blocking of subsequent production of pro-inflammatory cytokines. Additionally, SB332235 hindered microglial activity induced by TBI. These findings confirmed the neuroprotective effects of SB332235 against TBI, and the involved mechanisms were in part due to the suppression of NLRP3 inflammasome activity. This study suggests that SB332235 may act as an anti-inflammatory agent to improve functional outcomes in brain injury when applied clinically.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Masculino , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/patologia
2.
J Obstet Gynaecol ; 43(2): 2288226, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38054928

RESUMO

BACKGROUND: Non-invasive prenatal testing (NIPT) has been widely adopted as an approach for foetal aneuploidy screening. This study was to evaluate the performance of NIPT for foetal T21 detection in subgroups of pregnancies and the correlation between Z-score and discordant positive predictive values (PPVs). METHODS: We retrospectively reviewed the NIPT results among 22361 pregnancies undergoing combined second-trimester screening (cSTS) previously. Sixty-four cases with positive NIPT results for foetal T21 were validated by invasive prenatal diagnosis. RESULTS: In pregnancies with cSTS-T21 low-, intermediate-, and high-risk, the PPVs at NIPT were 14.3%, 64.3%, and 86.4%, respectively. Mean Z-scores of positive NIPT cases with cSTS-T21 high- and intermediate-risk were comparable, while were higher than that of cases with pre-test low-risk. Furthermore, PPVs for positive NIPT cases at 3 < Z < 5, 5 ≤ Z < 9, and Z ≥ 9 were 16.7%, 63.2%, and 100.0%, respectively. CONCLUSIONS: This study suggested that Z-score value of positive cases might be associated with discordant PPVs for T21 screening in subgroups of pregnancies.


Non-invasive prenatal testing has been offered as a primary screening option to high-risk or general pregnancy. However, the accuracy of non-invasive prenatal testing in patients with various pre-test risks remained unveiled. The current study revealed that the true positive probability for foetal trisomy 21 screening in pregnancies with prior high-risk was higher than that in pregnancies of intermediate-risk, and both of them were much higher than that of those with pre-test low-risk. The average of Z-score for chromosome 21 of positive non-invasive prenatal testing case in high-risk group was comparable with that of intermediate-risk group, while was higher than that of low-risk group. There was also an upward trend for the true positive probability of foetal trisomy 21 screening with the increase of Z-score. Our study revealed that pre-test risk and Z-score for chromosome 21 were helpful for accurately interpreting the reliability of positive results for foetal trisomy 21.


Assuntos
Síndrome de Down , Feminino , Gravidez , Humanos , Síndrome de Down/diagnóstico , Estudos Retrospectivos , Diagnóstico Pré-Natal , Cuidado Pré-Natal , Aneuploidia , Vitaminas
3.
J Clin Pediatr Dent ; 47(4): 111-115, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37408354

RESUMO

Hypophosphatasia (HPP) is a rare genetic disorder mainly characterized by skeletal dysplasia that results from a deficiency in tissue-nonspecific alkaline phosphatase (TNSALP), which is encoded by the alkaline phosphatase (ALPL) gene. Odontohypophosphatasia (odonto-HPP) is a mild form of HPP characterized by oral symptoms, such as premature loss of primary teeth. This study was to describe a 4-year-old boy with premature loss of primary teeth who was diagnosed with odonto-HPP. X-ray radiography and laboratory examinations were performed for the diagnosis. Genetic etiology was revealed by whole-exome sequencing. A novel combination of two variants in the ALPL gene was identified in this case; this combination resulted in the odonto-HPP phenotype. c.346G>A (p.Ala116Thr) was inherited from the proband's father, whereas c.1563C>G (p.Ser521Arg) was inherited from the proband's mother. The proband's 8-year-old sister was a heterozygous carrier of c.346G>A (p.Ala116Thr) in the ALPL gene. Thus far, the proband's sister has been asymptomatic. Our findings indicate that c.346G>A is a pathogenic genetic alteration; c.1563C>G might cause a predisposition to the dental phenotype in combination with c.346G>A. It is important for pediatric dentists to consider a diagnosis of odonto-HPP in children with premature loss of primary teeth.


Assuntos
Hipofosfatasia , Desmineralização do Dente , Humanos , Hipofosfatasia/genética , Hipofosfatasia/patologia , Fosfatase Alcalina/genética , Desmineralização do Dente/genética , Mutação
4.
J Clin Pediatr Dent ; 47(6): 74-85, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37997238

RESUMO

Mesenchymal stem cells (MSCs) have shown great potential as important therapeutic tools for dental pulp tissue engineering, with the maintenance and enhancement of their stemness being crucial for successful therapeutic application in vivo and three-dimensional (3D) spheroid formation considered a reliable technique for enhancing their pluripotency. Human exfoliated deciduous tooth stem cells (SHED) were cultured in a low attachment plate to form aggregates for five days. Then, the resulting spheroids were analyzed for pluripotent marker expression, paracrine secretory function, proliferation, signaling pathways involved, and distribution of key proteins within the spheroids. The results indicated that 3D spheroid formation significantly increased the activation of the transforming growth factor beta (TGF-ß)/Smad signaling pathway and upregulated the secretion and mRNA expression levels of TGF-ß, which in turn enhanced the expression of pluripotency markers in SHED spheroids. The activation of the TGF-ß/Smad signaling pathway through 3D spheroid formation was found to preserve the stemness properties of SHED. Thus, understanding the mechanisms behind pluripotency maintenance of SHED culture through 3D spheroid formation could have implications for the therapeutic application of MSCs in regenerative medicine and tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco , Humanos , Células-Tronco/metabolismo , Células-Tronco Mesenquimais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Dente Decíduo , Células Cultivadas , Polpa Dentária
5.
Neurochem Res ; 46(7): 1794-1800, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33876374

RESUMO

Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorder characterized by impaired social interaction, and repetitive or restricted interests and behaviors. Membrane proteins are a significant part of the proteins in cell and play key functions in synaptic transmission. We have recently shown that neuronal nitric oxide synthase (nNOS) expression was reduced in the basolateral amygdala (BLA) of mice following postnatal valproic acid (VPA) exposure. In the current study, we utilized a label-free proteomics approach to identify and quantify surface protein expression in nNOS-positive interneurons between VPA-treated and control mice. Western blot was used to confirm the expression of selected membrane proteins. Our proteomics data revealed differentially expressed surface proteins in nNOS interneurons, e.g. Narp, AMPA-type glutamate (AMPA) receptor subunit GluA4 and Protein kinase C gamma (PKCγ), which were validated by Western blotting in mice treated with VPA. This work will pave the way for further elucidation of the mechanisms of these differentially membrane proteins in nNOS interneurons-medicated ASD.


Assuntos
Interneurônios/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Sinapses/efeitos dos fármacos , Ácido Valproico/farmacologia , Animais , Feminino , Interneurônios/metabolismo , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Proteoma/efeitos dos fármacos , Proteômica , Sinapses/metabolismo
6.
Phytother Res ; 35(6): 3167-3180, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33885189

RESUMO

Sarsasapogenin (Sar), a natural steroidal compound, shows neuroprotection, cognition-enhancement, antiinflammation, antithrombosis effects, and so on. However, whether Sar has ameliorative effects on diabetes-associated cognitive impairment remains unknown. In this study, we found that Sar ameliorated diabetes-associated memory impairment in streptozotocin-induced diabetic rats, evidenced by increased numbers of crossing platform and percentage of time spent in the target quadrant in Morris water maze tests, and suppressed the nucleotide-binding domain and leucine-rich repeat containing protein 1 (NLRP1) inflammasome in hippocampus and cerebral cortex. Furthermore, Sar inhibited advanced glycation end-products and its receptor (AGEs/RAGE) axis and suppressed up-regulation of thrombin receptor protease-activated receptor 1 (PAR-1) in cerebral cortex. On the other hand, Sar mitigated high glucose-induced neuronal damages, NLRP1 inflammasome activation, and PAR-1 up-regulation in high glucose-cultured SH-SY5Y cells, but did not affect thrombin activity. Moreover, the effects of Sar were similar to those of a selective PAR-1 antagonist vorapaxar. Further studies indicated that activation of the NLRP1 inflammasome and NF-κB mediated the effect of PAR-1 up-regulation in high glucose condition by using PAR-1 knockdown assay. In summary, this study demonstrated that Sar prevented memory impairment caused by diabetes, which was achieved through suppressing neuroinflammation from activated NLRP1 inflammasome and NF-κB regulated by cerebral PAR-1. HIGHLIGHTS: Sarsasapogenin ameliorated memory impairment caused by diabetes in rats. Sarsasapogenin mitigated neuronal damages and neuroinflammation by down-regulating cerebral PAR-1. The NLRP1 inflammasome and NF-κB signaling mediated the pro-inflammatory effects of PAR-1. Sarsasapogenin was a pleiotropic neuroprotective agent and memory enhancer in diabetic rodents.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Espirostanos/farmacologia , Animais , Linhagem Celular , Regulação para Baixo , Hipocampo/efeitos dos fármacos , Humanos , Inflamassomos/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina
7.
Clin Sci (Lond) ; 134(2): 155-167, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31934723

RESUMO

Colorectal cancer (CRC) is the third most common malignancies in adults. Similar to other solid tumors, CRC cells show increased proliferation and suppressed apoptosis during the development and progression of the disease. Previous studies have shown that a novel tumor oncogene, spermatogenic basic helix-loop-helix transcription factor zip 1 (SPZ1), can promote proliferation. However, it is unclear whether SPZ1 plays a role in suppressing apoptosis, and the molecular mechanism behind SPZ1's suppression of apoptosis in CRC remains unclear. Here, we found that silencing endogenous SPZ1 inhibits cell growth and induces apoptosis, and overexpression of SPZ1 promotes cell growth. These findings were corroborated by in vitro and in vivo studies. Interestingly, SPZ1 overexpressing cells were resistant to 5-fluorouracil, a drug commonly used to treat cancer. Moreover, knocking down SPZ1 led to the activation of caspase through the deregulation of Bim by ERK1/2, we found that CRC tissues had significantly higher SPZ1 and lower Bim expression, and SPZ1HBimL were associated with advanced clinical stage of CRC. Collectively, our findings demonstrate that SPZ1 contributes to tumor progression by limiting apoptosis. SPZ1 reduces apoptosis by altering the stability of Bim, suggesting SPZ1 may serve as a biomarker and therapeutic target for CRC.


Assuntos
Apoptose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteína 11 Semelhante a Bcl-2/metabolismo , Neoplasias Colorretais/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos/crescimento & desenvolvimento , Xenoenxertos/metabolismo , Humanos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , RNA Interferente Pequeno , Regulação para Cima
8.
Arterioscler Thromb Vasc Biol ; 39(4): 719-730, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30816805

RESUMO

Objective- TFEB (transcription factor EB) was recently reported to be induced by atheroprotective laminar flow and play an anti-atherosclerotic role by inhibiting inflammation in endothelial cells (ECs). This study aims to investigate whether TFEB regulates endothelial inflammation in diabetic db/db mice and the molecular mechanisms involved. Approach and Results- Endothelial denudation shows that TFEB is mainly expressed in ECs in mouse aortas. Western blotting shows TFEB total protein level decreases whereas the p-TFEB S142 (phosphorylated form of TFEB) increases in db/db mouse aortas, suggesting a decreased TFEB activity. Adenoviral TFEB overexpression reduces endothelial inflammation as evidenced by decreased expression of vascular inflammatory markers in db/db mouse aortas, and reduced expression of a wide range of adhesion molecules and chemokines in human umbilical vein ECs. Monocyte attachment assay shows TFEB suppresses monocyte adhesion to human umbilical vein ECs. RNA sequencing of TFEB-overexpressed human umbilical vein ECs suggested TFEB inhibits NF-κB (nuclear factor-kappa B) signaling. Indeed, luciferase assay shows TFEB suppresses NF-κB transcriptional activity. Mechanistically, TFEB suppresses IKK (IκB kinase) activity to protect IκB-α from degradation, leading to reduced p65 nuclear translocation. Inhibition of IKK by PS-1145 abolished TFEB silencing-induced inflammation in human umbilical vein ECs. Lastly, we identified KLF2 (Krüppel-like factor 2) upregulates TFEB expression and promoter activity. Laminar flow experiment showed that KLF2 is required for TFEB induction by laminar flow and TFEB is an anti-inflammatory effector downstream of laminar flow-KLF2 signaling in ECs. Conclusions- These findings suggest that TFEB exerts anti-inflammatory effects in diabetic mice and such function in ECs is achieved by inhibiting IKK activity and increasing IκBα level to suppress NF-κB activity. KLF2 mediates TFEB upregulation in response to laminar flow.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Angiopatias Diabéticas/prevenção & controle , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/fisiologia , Quinase I-kappa B/fisiologia , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/fisiologia , Animais , Aorta/metabolismo , Adesão Celular , Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Fatores de Transcrição Kruppel-Like/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Condicionamento Físico Animal , Receptores para Leptina/deficiência , Proteínas Recombinantes/metabolismo , Transcrição Gênica
9.
Arterioscler Thromb Vasc Biol ; 36(3): 553-60, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26769046

RESUMO

OBJECTIVE: Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. APPROACH AND RESULTS: We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. CONCLUSIONS: The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Diabetes Mellitus/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Smad Reguladas por Receptor/metabolismo , Vasodilatação , Adulto , Idoso , Animais , Anticorpos Neutralizantes/farmacologia , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/farmacologia , Estudos de Casos e Controles , Células Cultivadas , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Fator de Crescimento Derivado de Plaquetas/farmacologia , Interferência de RNA , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad Reguladas por Receptor/genética , Fatores de Tempo , Técnicas de Cultura de Tecidos , Transfecção , Regulação para Cima , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
10.
Biochem Pharmacol ; 226: 116392, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942091

RESUMO

Bitter taste receptors (TAS2Rs) Tas2r108 gene possesses a high abundance in mouse kidney; however, the biological functions of Tas2r108 encoded receptor TAS2Rs member 4 (TAS2R4) are still unknown. In the present study, we found that mouse TAS2R4 (mTAS2R4) signaling was inactivated in chronic high glucose-stimulated mouse podocyte cell line MPC, evidenced by the decreased protein expressions of mTAS2R4 and phospholipase C ß2 (PLCß2), a key downstream molecule of mTAS2R4 signaling. Nonetheless, agonism of mTAS2R4 by quinine recovered mTAS2R4 and PLCß2 levels, and increased podocyte cell viability as well as protein expressions of ZO-1 and nephrin, biomarkers of podocyte slit diaphragm, in high glucose-cultured MPC cells. However, blockage of mTAS2R4 signaling with mTAS2R4 blockers γ-aminobutyric acid and abscisic acid, a Gßγ inhibitor Gallein, or a PLCß2 inhibitor U73122 all abolished the effects of quinine on NLRP3 inflammasome and p-NF-κB p65 as well as the functional podocyte proteins in MPC cells in a high glucose condition. Furthermore, knockdown of mTAS2R4 with lentivirus-carrying Tas2r108 shRNA also ablated the effect of quinine on the key molecules of the above inflammatory signalings and podocyte functions in high glucose-cultured MPC cells. In summary, we demonstrated that activation of TAS2R4 signaling alleviated the podocyte injury caused by chronic high glucose, and inhibition of NF-κB p65 and NLRP3 inflammasome mediated the protective effects of TAS2R4 activation on podocytes. Moreover, activation of TAS2R4 signaling could be an important strategy for prevention and treatment of diabetic kidney disease.

11.
Can J Physiol Pharmacol ; 91(7): 562-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23826680

RESUMO

Theanine and caffeine, 2 naturally occurring components in tea, have repeatedly been shown to deliver unique cognitive benefits when consumed in combination. In this study, we assessed the beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral damage in rats. Theanine and caffeine had no effect on physiological variables, including pH, partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2), mean arterial blood pressure, plasma glucose, or regional cerebral blood flow. Treatment with theanine (1 mg/kg body mass, intraperitoneal injection) alone significantly reduced cerebral infarction induced by cerebral ischemia-reperfusion, but caffeine (10 mg/kg, intravenous administration) alone only had a marginal effect. However, the combination of theanine plus caffeine resulted in a significant reduction of cerebral infarction and brain edema compared with theanine monotherapy. Meanwhile, increased malondialdehyde levels as well as decreased superoxide dismutase activity, glutathione peroxidase activity, and glutathione levels observed in the cerebral cortex after cerebral ischemia-reperfusion were significantly ameliorated by the combination therapy. Furthermore, the elevated inflammatory response levels observed in the cortex after cerebral ischemia-reperfusion were markedly attenuated by the combined treatment. Thus, it is suggested that the neuroprotective potential of a combination therapy with theanine and caffeine against cerebral ischemia-reperfusion is partly ascribed to their antioxidant and anti-inflammatory properties.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Cafeína/farmacologia , Córtex Cerebral/efeitos dos fármacos , Infarto Cerebral/tratamento farmacológico , Glutamatos/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Isquemia Encefálica/metabolismo , Córtex Cerebral/metabolismo , Infarto Cerebral/metabolismo , Sinergismo Farmacológico , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Malondialdeído/metabolismo , Fármacos Neuroprotetores/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase/metabolismo
12.
Ren Fail ; 35(3): 367-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23362955

RESUMO

There is an increasing evidence that oxidative stress plays an important role in the pathogenesis of rhabdomyolysis-induced acute renal failure (ARF). In this study, protective effects of L-citrulline on glycerol-induced ARF in rats were investigated. Six groups of rats were employed in this study: group 1 served as a control; group 2 was only given glycerol (50%, 10 mL/kg, i.m.); group 3 was given glycerol plus dexamethasone (0.1 mg/kg, i.g.) as positive reference drug, starting at the same time as the glycerol injections; the last three groups were given glycerol plus L-citrulline (300, 600, and 900 mg/kg, i.g.) respectively, starting at the same time as the glycerol injections. The injections of glycerol were only once, and after glycerol injections the i.g. administrations of dexamethasone and L-citrulline were repeated every 24 h for 7 days. After 7 days of glycerol injections, the blood samples and kidney tissues were harvested for future biochemical and pathology analyses. The levels of creatinine (Cr) and urea nitrogen (BUN) in plasma, the content of malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO), the activity of total nitric oxide synthase (TNOS), inducible nitric oxide synthase (iNOS), endothelial NO synthase (eNOS), and superoxide dismutase (SOD) were evaluated in kidney tissues. Consequently, administrations of L-citrulline improved an impaired intrarenal oxygenation and kidney function compared with the glycerol group, and prevented the renal oxidative stress damage as well as severe functional and morphological renal deterioration. Therefore, L-citrulline might have potential application in the amelioration of glycerol-induced ARF.


Assuntos
Injúria Renal Aguda/prevenção & controle , Citrulina/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Dexametasona , Avaliação Pré-Clínica de Medicamentos , Glicerol , Rim/patologia , Masculino , Ratos , Ratos Sprague-Dawley
13.
Brain Res Bull ; 202: 110755, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678443

RESUMO

Autism spectrum disorder (ASD) is a set of heterogeneous neurodevelopmental disorders, characterized by social interaction deficit, stereotyped or repetitive behaviors. Apart from these core symptoms, a great number of individuals with ASD exhibit higher levels of anxiety and memory deficits. Previous studies demonstrate pronounced decrease of γ-aminobutyric acid B1 receptor (GABAB1R) protein level of frontal lobe in both ASD patients and animal models. The aim of the present study was to determine the role of GABAB1R in ASD-related behavioral aberrations. Herein, the protein and mRNA levels of GABAB1R in the prefrontal cortex (PFC) of sodium valproic acid (VPA)-induced mouse ASD model were determined by Western blot and qRT-PCR analysis, respectively. Moreover, the behavioral abnormalities in naive mice with GABAB1R knockdown mediated by recombinant adeno-associated virus (rAAV) were assessed in a comprehensive test battery consisted of social interaction, marble burying, self-grooming, open-field, Y-maze and novel object recognition tests. Furthermore, the action potential changes induced by GABAB1R deficiency were examined in neurons within the PFC of mouse. The results show that the mRNA and protein levels of GABAB1R in the PFC of prenatal VPA-induced mouse ASD model were decreased. Concomitantly, naive mice with GABAB1R knockdown exhibited ASD-like behaviors, such as impaired social interaction and communication, elevated stereotypes, anxiety and memory deficits. Patch-clamp recordings also revealed that GABAB1R knockdown provoked enhanced neuronal excitability by increasing action potential discharge frequencies. Overall, these findings support a notion that GABAB1R deficiency might contribute to ASD-like phenotypes, with the pathogenesis most likely resulting from enhanced neuronal excitability. SUBHEADINGS: GABAB1 Knockdown Induces Behavioral Aberrations with ASD.


Assuntos
Transtorno do Espectro Autista , Feminino , Gravidez , Humanos , Animais , Camundongos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Córtex Pré-Frontal , Modelos Animais de Doenças , Transtornos da Memória , Ácido gama-Aminobutírico
14.
Exp Biol Med (Maywood) ; 248(16): 1373-1382, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37642261

RESUMO

Pre-eclampsia (PE) is a severe pregnancy complication characterized by impaired trophoblast invasion and spiral artery remodeling and can have serious consequences for both mother and child. Protein phosphatase 1 regulatory subunit 3G (PPP1R3G) is involved in numerous tumor-related biological processes. However, the biological action and underlying mechanisms of PPP1R3G in PE progression remain unclear. We used western blotting and immunohistochemistry to investigate PPP1R3G expression in gestational age-matched pre-eclamptic and normal placental tissues. After lentivirus transfection, wound-healing, Transwell, cell-counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and TdT mediateddUTP Nick End Labeling (TUNEL) assays were used to assess trophoblast migration, invasion, proliferation, and apoptosis, respectively. The relative expression levels of PPP1R3G and the proteins involved in the Akt signaling pathway were determined using western blotting. The results showed that PPP1R3G levels were significantly lower in the placental tissues and GSE74341 microarray of the PE group than those of the healthy control group. We also found that neonatal weight and Apgar score were lower at birth, and peak systolic blood pressure and diastolic blood pressure were higher in the PE group than in the non-PE group. In addition, PPP1R3G knockdown decreased p-Akt/Akt expression and inhibited migration, invasion, and proliferation in HTR-8/SVneo trophoblasts but had no discernible effect on cell apoptosis. Furthermore, PPP1R3G positively regulated matrix metallopeptidase 9 (MMP-9), which was downregulated in placental tissues of pregnant women with PE. These results provided the first evidence that the reduced levels of PPP1R3G might contribute to PE by suppressing the invasion and migration of trophoblasts and targeting the Akt/MMP-9 signaling pathway.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Criança , Feminino , Humanos , Recém-Nascido , Gravidez , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Trofoblastos/metabolismo
15.
Neuroscience ; 526: 107-120, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37385334

RESUMO

Epilepsy, a neurological condition, is widely prevalent among individuals with intellectual disability (ID). It is well established that N-methyl-D-aspartate (NMDA) receptors play an important role in both epilepsy and ID. Autosomal dominant mutations in the GRIN2B gene, which encodes the GluN2B subunit of the NMDA receptor, have been reported to be associated with epilepsy and ID. However, the underlying mechanism of this association is not well-understood. In this study, we identified a novel GRIN2B mutation (c.3272A > C, p.K1091T) in a patient with epilepsy and ID. The proband was a one year and ten months old girl. GRIN2B variant was inherited from her mother. We further investigated the functional consequences of this mutation. Our findings revealed that the p.K1091T mutation created a Casein kinase 2 phosphorylation site. Using recombinant NMDA receptors containing the GluN2B-K1091T along with GluN1 in HEK 293T cells, we observed significant defects in its interactions with postsynaptic density 95. It is accompanied by reduced delivery of the receptors to the cell membrane and a decrease in glutamate affinity. Moreover, primary neurons expressing GluN2B-K1091T also exhibited impaired surface expression of NMDA receptors, a reduction in dendritic spine number and excitatory synaptic transmission. In summary, our study reports a novel GRIN2B mutation and provides functional characteristics of this mutation in vitro, thereby contributing to the understanding of GRIN2B variants in epilepsy and ID.


Assuntos
Epilepsia , Deficiência Intelectual , Feminino , Humanos , Lactente , Epilepsia/genética , Deficiência Intelectual/genética , Mutação , Mutação de Sentido Incorreto , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
16.
J Pharm Biomed Anal ; 230: 115383, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054601

RESUMO

Dried blood spot (DBS) samples have been widely used in many fields including newborn screening, with the advantages in transportation, storage and non-invasiveness. The DBS metabolomics research of neonatal congenital diseases will greatly expand the understanding of the disease. In this study, we developed a liquid chromatography-mass spectrometry-based method for neonatal metabolomics analysis of DBS. The influences of blood volume and chromatographic effects on the filter paper on metabolite levels were studied. The levels of 11.11 % metabolites were different between 75 µL and 35 µL of blood volumes used for DBS preparation. Chromatographic effects on the filter paper occurred in DBS prepared with 75 µL whole blood and 6.67 % metabolites had different MS responses when central disks were compared with outer disks. The DBS storage stability study showed that compared with - 80 °C storage, storing at 4 °C for 1 year had obvious influences on more than half metabolites. Storing at 4 °C and - 20 °C for short term (< 14 days) and - 20 °C for longer term (1 year) had less influences on amino acids, acyl-carnitines and sphingomyelins, but greater influences on partial phospholipids. Method validation showed that this method has a good repeatability, intra-day and inter-day precision and linearity. Finally, this method was applied to investigate metabolic disruptions of congenital hypothyroidism (CH), metabolic changes of CH newborns were mainly involved in amino acid metabolism and lipid metabolism.


Assuntos
Aminoácidos , Teste em Amostras de Sangue Seco , Recém-Nascido , Humanos , Teste em Amostras de Sangue Seco/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas , Triagem Neonatal/métodos
17.
Diabetes ; 72(9): 1330-1342, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347764

RESUMO

Diabetic endothelial dysfunction associated with diminished endothelial nitric oxide (NO) synthase (eNOS) activity accelerates the development of atherosclerosis and cardiomyopathy. However, the approaches to restore eNOS activity and endothelial function in diabetes remain limited. The current study shows that enhanced expression of Krüppel-like factor 2 (KLF2), a shear stress-inducible transcription factor, effectively improves endothelial function through increasing NO bioavailability. KLF2 expression is suppressed in diabetic mouse aortic endothelium. Running exercise and simvastatin treatment induce endothelial KLF2 expression in db/db mice. Adenovirus-mediated endothelium-specific KLF2 overexpression enhances both endothelium-dependent relaxation and flow-mediated dilatation, while it attenuates oxidative stress in diabetic mouse arteries. KLF2 overexpression increases the phosphorylation of eNOS at serine 1177 and eNOS dimerization. RNA-sequencing analysis reveals that KLF2 transcriptionally upregulates genes that are enriched in the cyclic guanosine monophosphate-protein kinase G-signaling pathway, cAMP-signaling pathway, and insulin-signaling pathway, all of which are the upstream regulators of eNOS activity. Activation of the phosphoinositide 3-kinase-Akt pathway and Hsp90 contributes to KLF2-induced increase of eNOS activity. The present results suggest that approaches inducing KLF2 activation, such as physical exercise, are effective to restore eNOS activity against diabetic endothelial dysfunction. ARTICLE HIGHLIGHTS: Exercise and statins restore the endothelial expression of Krüppel-like factor 2 (KLF2), which is diminished in diabetic db/db mice. Endothelium-specific overexpression of KLF2 improves endothelium-dependent relaxation and flow-mediated dilation through increasing nitric oxide bioavailability. KLF2 promotes endothelial nitric oxide synthase (eNOS) coupling and phosphorylation in addition to its known role in eNOS transcription. KLF2 upregulates the expression of several panels of genes that regulate eNOS activity.


Assuntos
Diabetes Mellitus Experimental , Óxido Nítrico Sintase Tipo III , Vasodilatação , Animais , Camundongos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Endotélio Vascular/metabolismo , Exercício Físico , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição/metabolismo , Vasodilatação/genética
18.
Naunyn Schmiedebergs Arch Pharmacol ; 395(1): 77-85, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792626

RESUMO

Upregulation of thrombin receptor protease-activated receptor 1 (PAR-1) is verified to contribute to chronic kidney diseases, including diabetic nephropathy; however, the mechanisms are still unclear. In this study, we investigated the effect of PAR-1 on high glucose-induced proliferation of human glomerular mesangial cells (HMCs), and explored the mechanism of PAR-1 upregulation from alteration of microRNAs. We found that high glucose stimulated proliferation of the mesangial cells whereas PAR-1 inhibition with vorapaxar attenuated the cell proliferation. Moreover, high glucose upregulated PAR-1 in mRNA level and protein expression while did not affect the enzymatic activity of thrombin in HMCs after 48 h culture. Then high glucose induced PAR-1 elevation was likely due to the alteration of the transcription or post-transcriptional processing. It was found that miR-17 family members including miR-17-5p, -20a-5p, and -93-5p were significantly decreased among the eight detected microRNAs only in high glucose-cultured HMCs, but miR-129-5p, miR-181a-5p, and miR-181b-5p were markedly downregulated in both high glucose-cultured HMCs and equivalent osmotic press control compared with normal glucose culture. So miR-20a was selected to confirm the role of miR-17 family on PAR-1 upregulation, finding that miR-20a-5p overexpression reversed the upregulation of PAR-1 in mRNA and protein levels induced by high glucose in HMCs. In summary, our finding indicated that PAR-1 upregulation mediated proliferation of glomerular mesangial cells induced by high glucose, and deficiency of miR-17 family resulted in PAR-1 upregulation.


Assuntos
Células Mesangiais/citologia , MicroRNAs/genética , Receptor PAR-1/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Nefropatias Diabéticas/genética , Regulação para Baixo , Glucose/metabolismo , Humanos , Lactonas/farmacologia , Piridinas/farmacologia , Regulação para Cima
19.
Fundam Clin Pharmacol ; 36(3): 509-517, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34904279

RESUMO

Thrombin activity enhancement and its receptor protease-activated receptor 1 (PAR-1) activation play vital roles in neurologic deficits in the central nervous system. Our recent study showed that PAR-1 upregulation stimulated by chronic high glucose (HG) caused central neuron injury through neuroinflammation; however, the molecular mechanisms are far from clear. In the present study, we found that HG resulted in neuronal injury of SH-SY5Y cells as evidenced by decreased cell viability and increased lactate dehydrogenase release and elevated the mRNA level of PAR-1. Moreover, we predicted and determined several potential microRNAs (miRs) combining with the 3'-UTR of PAR-1 mRNA, finding that miR-20a-5p, miR-93-5p, and miR-190a-5p were significantly decreased in HG-cultured SH-SY5Y cells compared with control. Further, SH-SY5Y cells stably transfected with miR-20a-5p or miR-190a-5p mimic were established, and overexpression efficiency were confirmed. It was found that miR-20a-5p or miR-190a-5p overexpression markedly decreased PAR-1 mRNA level and protein expression in SH-SY5Y cells cultured with HG and normal glucose, indicating that miR-20a or miR-19a deficiency contributed to HG-induced PAR-1 upregulation. Together, our findings demonstrated that PAR-1 upregulation mediated HG-induced neuronal damage in central neurons, which was achieved through miR-20a or miR-190a deficiency.


Assuntos
MicroRNAs , Receptor PAR-1 , Apoptose , Linhagem Celular Tumoral , Glucose/metabolismo , Glucose/farmacologia , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , Receptor PAR-1/genética
20.
Food Funct ; 13(1): 242-254, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34881772

RESUMO

Piperine is reported to ameliorate common metabolic diseases, however, its molecular mechanism is still unclear. In the present study, we examined whether piperine could stimulate glucagon-like peptide-1 (GLP-1) secretion in a human enteroendocrine cell line, Caco-2, and explored the potential mechanisms from the activation of human bitter taste receptors (TAS2Rs). It was found that TAS2R14 was highly expressed in Caco-2 cells, far more than TAS2R4 and TAS2R10. Piperine and flufenamic acid (FA, a known TAS2R14 agonist) markedly increased intracellular calcium mobilization and significantly enhanced the GLP-1 secretion, accompanied by elevated levels of proglucagon mRNA in Caco-2 cells compared with the control. Moreover, piperine and FA activated TAS2R14 signaling as evidenced by the increased mRNA and protein levels of TAS2R14, and the protein expression of its downstream key molecules including phospholipase C ß2 (PLCß2) and a transient receptor potential channel melastatin 5 (TRPM5). On the other hand, a G protein ßγ subunit inhibitor Gallein or a PLC inhibitor U73122 alleviated piperine-stimulated GLP-1 secretion in Caco-2 cells. In the meantime, a flavanone hesperetin significantly attenuated piperine and FA induced the intracellular calcium mobilization and GLP-1 secretion. Furthermore, TAS2R14 knockdown reversed the piperine-triggered up-regulation of PLCß2 and TRPM5 as well as increased the GLP-1 secretion in Caco-2 cells by TAS2R14 shRNA transfection. In summary, our findings demonstrated that piperine promoted the GLP-1 secretion from enteroendocrine cells through the activation of TAS2R14 signaling. Moreover, TAS2R14 was likely a target of piperine in the alleviation of metabolic diseases.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Células Enteroendócrinas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Células CACO-2 , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa