Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Eur J Appl Physiol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177769

RESUMO

Sodium bicarbonate (SB) supplementation is an ergogenic strategy for athletes competing in high-intensity exercise, but the efficacy of SB for accelerating recovery from exercise and thus improving performance during repeated bouts of exercise is not fully understood. In a similar fashion to using SB as a pre-exercise buffer, it is possible accelerated restoration of blood pH and bicarbonate following an exercise bout mechanistically underpins the use of SB as a recovery aid. Physiological mechanisms contributing to beneficial effects for SB during repeated bout exercise could be more far-reaching however, as alterations in strong ion difference (SID) and attenuated cellular stress response might also contribute to accelerated recovery from exercise. From inspection of existing literature, ingestion of 0.3 g kg-1 body mass SB ~60-90 min pre-exercise seems to be the most common dosage strategy, but there is evidence emerging for the potential application of post-exercise supplementation timing, gradual SB doses throughout a competition day, or even ingestion during exercise. Based on this review of literature, an SB ingestion recovery framework is proposed to guide athletes and practitioners on the use of SB to enhance performance for multiple bouts of exercise.

2.
Int J Sport Nutr Exerc Metab ; : 1-10, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222921

RESUMO

This study investigated the effect of oral and topical sodium bicarbonate (SB) on soccer-specific performance during simulated soccer exercise. In a block randomized, double-blind, crossover design, 10 collegiate male soccer players (stature: 181.7 ± 3.2 cm, body mass: 81.7 ± 10.5 kg) performed soccer-specific performance tests (countermovement jumps, Illinois agility, 8 × 25 m repeated sprints) throughout a 90-min soccer-specific aerobic field test (SAFT90) following 0.3 g/kg body mass SB in capsules (SB-ORAL), 0.9036 g/kg body mass PR Lotion (SB-LOTION), or placebo capsules and lotion (PLA). Soccer-specific performance tests were conducted pre-SAFT90, during half-time and post-SAFT90. Blood samples were analyzed for acid-base balance (pH; bicarbonate, HCO3-) and strong ions (sodium, Na+; potassium, K+). Average sprint times were quicker for SB-ORAL than PLA during half-time (3.7%; p = .049; g = .57) and post-SAFT90 (4.9%; p = .041; g = .66). SB-ORAL increased pH and HCO3- prewarm-up and during half-time (p < .05), and lowered K+ during half-time (p = .035) compared with PLA. SB-LOTION increased pH (p = .019) and lowered K+ (p = .012) during half-time compared with PLA. SB-LOTION increased Na+ postexercise compared with PLA (p = .008). Repeated sprint times during simulated soccer exercise improved for SB-ORAL, which might have been mechanistically underpinned by elevated blood buffering capacity and greater regulation of strong ion concentration. Consuming SB in capsules is a more effective strategy than topical SB application for improving blood buffering capacity and repeated sprint performance throughout competitive soccer matches.

3.
Eur J Appl Physiol ; 122(12): 2555-2563, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36053364

RESUMO

Sodium bicarbonate (NaHCO3) is a widely researched ergogenic aid, but the optimal blinding strategy during randomised placebo-controlled trials is unknown. In this multi-study project, we aimed to determine the most efficacious ingestion strategy for blinding NaHCO3 research. During study one, 16 physically active adults tasted 0.3 g kg-1 body mass NaHCO3 or 0.03 g kg-1 body mass sodium chloride placebo treatments given in different flavour (orange, blackcurrant) and temperature (chilled, room temperature) solutions. They were required to guess which treatment they had received. During study two, 12 recreational athletes performed time-to-exhaustion (TTE) cycling trials (familiarisation, four experimental). Using a randomised, double-blind design, participants consumed 0.3 g kg-1 body mass NaHCO3 or a placebo in 5 mL kg-1 body mass chilled orange squash/water solutions or capsules and indicated what they believed they had received immediately after consumption, pre-TTE and post-TTE. In study one, NaHCO3 prepared in chilled orange squash resulted in the most unsure ratings (44%). In study two, giving NaHCO3 in capsules resulted in more unsure ratings than in solution after consumption (92 vs 33%), pre-TTE (67 vs. 17%) and post-TTE (50 vs. 17%). Administering NaHCO3 in capsules was the most efficacious blinding strategy which provides important implications for researchers conducting randomised placebo-controlled trials.


Assuntos
Ácido Láctico , Bicarbonato de Sódio , Adulto , Humanos , Bicarbonato de Sódio/farmacologia , Cápsulas , Ciclismo , Método Duplo-Cego , Ingestão de Alimentos
4.
Int J Sport Nutr Exerc Metab ; 32(6): 453-461, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894958

RESUMO

The potential ergogenic benefits of caffeine (CAF) are well known within the athletic community, often leading to its use in adolescent swimming cohorts to enhance their performance. However, it has previously been reported that CAF has sleep-disturbing effects, which could be detrimental to performance over consecutive days in multiday competitions. Moreover, the effects that evening CAF ingestion has on sleep, side effects, and next-day performances are yet to be researched in trained adolescents. In a double-blind, randomized, crossover design, eight national-level swimmers (age: 18 ± 1 years, height: 1.76 ± 0.06 cm, body mass [BM]: 69.4 ± 6.4 kg) ingested a capsule containing 3 mg/kg BM CAF or a placebo 60 min before an evening 100-m swimming time trial. The next morning, sleep was analyzed (Core Consensus Sleep Diary) and 100-m time trials were repeated. Side effects were analyzed via visual analog scales throughout the study. No differences were found for swimming performance (p = .911) in the evening (CAF: 59.5 ± 7.8 s, placebo: 59.9 ± 7.9 s, g = 0.06) or morning (CAF: 59.7 ± 7.7 s, placebo: 60.2 ± 7.9 s, g = 0.07). In addition, no group differences were found for any subjective side effects (e.g., anxiety: p = .468, tachycardia: p = .859, alertness: p = .959) or sleep parameters (e.g., sleep latency: p = .395, total sleep time: p = .574). These results question the use of a standardized 3 mg/kg BM CAF ingestion strategy for 100-m swimming time trials in trained adolescents, although objective measures may be needed to confirm that CAF does not affect sleep within this cohort.


Assuntos
Desempenho Atlético , Cafeína , Adolescente , Humanos , Adulto Jovem , Adulto , Cafeína/farmacologia , Natação , Teste de Esforço , Sono , Método Duplo-Cego , Ingestão de Alimentos , Estudos Cross-Over
5.
Eur J Appl Physiol ; 121(12): 3283-3295, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34417881

RESUMO

As a nitric oxide (NO) enhancer, citrulline malate (CM) has recently been touted as a potential ergogenic aid to both resistance and high-intensity exercise performance, as well as the recovery of muscular performance. The mechanism has been associated with enhanced blood flow to active musculature, however, it might be more far-reaching as either ammonia homeostasis could be improved, or ATP production could be increased via greater availability of malate. Moreover, CM might improve muscle recovery via increased nutrient delivery and/or removal of waste products. To date, a single acute 8 g dose of CM on either resistance exercise performance or cycling has been the most common approach, which has produced equivocal results. This makes the effectiveness of CM to improve exercise performance difficult to determine. Reasons for the disparity in conclusions seem to be due to methodological discrepancies such as the testing protocols and the associated test-retest reliability, dosing strategy (i.e., amount and timing), and the recent discovery of quality control issues with some manufacturers stated (i.e., citrulline:malate ratios). Further exploration of the optimal dose is therefore required including quantification of the bioavailability of NO, citrulline, and malate following ingestion of a range of CM doses. Similarly, further well-controlled studies using highly repeatable exercise protocols with a large aerobic component are required to assess the mechanisms associated with this supplement appropriately. Until such studies are completed, the efficacy of CM supplementation to improve exercise performance remains ambiguous.


Assuntos
Desempenho Atlético , Citrulina/análogos & derivados , Malatos/farmacologia , Substâncias para Melhoria do Desempenho/farmacologia , Citrulina/farmacologia , Suplementos Nutricionais , Humanos
6.
J Sports Sci ; 37(13): 1464-1471, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30668281

RESUMO

This study investigated the effects of two separate doses of sodium bicarbonate (NaHCO3) on 4 km time trial (TT) cycling performance and post-exercise acid base balance recovery in hypoxia. Fourteen club-level cyclists completed four cycling TT's, followed by a 40 min passive recovery in normobaric hypoxic conditions (FiO2 = 14.5%) following one of either: two doses of NaHCO3 (0.2 g.kg-1 BM; SBC2, or 0.3 g.kg-1 BM; SBC3), a taste-matched placebo (0.07 g.kg-1 BM sodium chloride; PLA), or a control trial in a double-blind, randomized, repeated-measures and crossover design study. Compared to PLA, TT performance was improved following SBC2 (p = 0.04, g = 0.16, very likely beneficial), but was improved to a greater extent following SBC3 (p = 0.01, g = 0.24, very likely beneficial). Furthermore, a likely benefit of ingesting SBC3 over SBC2 was observed (p = 0.13, g = 0.10), although there was a large inter-individual variation. Both SBC treatments achieved full recovery within 40 min, which was not observed in either PLA or CON following the TT. In conclusion, NaHCO3 improves 4 km TT performance and acid base balance recovery in acute moderate hypoxic conditions, however the optimal dose warrants an individual approach.


Assuntos
Equilíbrio Ácido-Base/efeitos dos fármacos , Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Substâncias para Melhoria do Desempenho/administração & dosagem , Bicarbonato de Sódio/administração & dosagem , Adolescente , Adulto , Estudos Cross-Over , Método Duplo-Cego , Feminino , Gastroenteropatias/induzido quimicamente , Frequência Cardíaca , Humanos , Concentração de Íons de Hidrogênio , Hipóxia , Masculino , Oxigênio/sangue , Percepção , Substâncias para Melhoria do Desempenho/efeitos adversos , Substâncias para Melhoria do Desempenho/sangue , Esforço Físico , Bicarbonato de Sódio/efeitos adversos , Bicarbonato de Sódio/sangue , Adulto Jovem
7.
Eur J Appl Physiol ; 118(3): 607-615, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29344729

RESUMO

Acute moderate hypoxic exposure can substantially impair exercise performance, which occurs with a concurrent exacerbated rise in hydrogen cation (H+) production. The purpose of this study was therefore, to alleviate this acidic stress through sodium bicarbonate (NaHCO3) supplementation and determine the corresponding effects on severe-intensity intermittent exercise performance. Eleven recreationally active individuals participated in this randomised, double-blind, crossover study performed under acute normobaric hypoxic conditions (FiO2% = 14.5%). Pre-experimental trials involved the determination of time to attain peak bicarbonate anion concentrations ([HCO3-]) following NaHCO3 ingestion. The intermittent exercise tests involved repeated 60-s work in their severe-intensity domain and 30-s recovery at 20 W to exhaustion. Participants ingested either 0.3 g kg bm-1 of NaHCO3 or a matched placebo of 0.21 g kg bm-1 of sodium chloride prior to exercise. Exercise tolerance (+ 110.9 ± 100.6 s; 95% CI 43.3-178 s; g = 1.0) and work performed in the severe-intensity domain (+ 5.8 ± 6.6 kJ; 95% CI 1.3-9.9 kJ; g = 0.8) were enhanced with NaHCO3 supplementation. Furthermore, a larger post-exercise blood lactate concentration was reported in the experimental group (+ 4 ± 2.4 mmol l-1; 95% CI 2.2-5.9; g = 1.8), while blood [HCO3-] and pH remained elevated in the NaHCO3 condition throughout experimentation. In conclusion, this study reported a positive effect of NaHCO3 under acute moderate hypoxic conditions during intermittent exercise and therefore, may offer an ergogenic strategy to mitigate hypoxic induced declines in exercise performance.


Assuntos
Altitude , Exercício Físico , Resistência Física/efeitos dos fármacos , Bicarbonato de Sódio/farmacologia , Administração Oral , Adulto , Humanos , Ácido Láctico/sangue , Masculino , Oxigênio/metabolismo , Bicarbonato de Sódio/administração & dosagem
8.
J Sports Sci ; 36(15): 1705-1712, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29183257

RESUMO

The aim of this study was to investigate the effects of sodium bicarbonate (NaHCO3) on 4 km cycling time trial (TT) performance when individualised to a predetermined time to peak blood bicarbonate (HCO3-). Eleven male trained cyclists volunteered for this study (height 1.82 ± 0.80 m, body mass (BM) 86.4 ± 12.9 kg, age 32 ± 9 years, peak power output (PPO) 382 ± 22 W). Two trials were initially conducted to identify time to peak HCO3- following both 0.2 g.kg-1 BM (SBC2) and 0.3 g.kg-1 BM (SBC3) NaHCO3. Thereafter, on three separate occasions using a randomised, double-blind, crossover design, participants completed a 4 km TT following ingestion of either SBC2, SBC3, or a taste-matched placebo (PLA) containing 0.07 g.kg-1 BM sodium chloride (NaCl) at the predetermined individual time to peak HCO3-. Both SBC2 (-8.3 ± 3.5 s; p < 0.001, d = 0.64) and SBC3 (-8.6 ± 5.4 s; p = 0.003, d = 0.66) reduced the time to complete the 4 km TT, with no difference between SBC conditions (mean difference = 0.2 ± 0.2 s; p = 0.87, d = 0.02). These findings suggest trained cyclists may benefit from individualising NaHCO3 ingestion to time to peak HCO3- to enhance 4 km TT performance.


Assuntos
Desempenho Atlético , Bicarbonatos/sangue , Ciclismo/fisiologia , Bicarbonato de Sódio/farmacologia , Adulto , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino , Adulto Jovem
9.
Eur J Appl Physiol ; 117(5): 901-912, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28280973

RESUMO

PURPOSE: This study investigated the effect of induced alkalosis on the curvature constant (W') of the power-duration relationship under normoxic and hypoxic conditions. METHODS: Eleven trained cyclists (mean ± SD) Age: 32 ± 7.2 years; body mass (bm): 77.0 ± 9.2 kg; VO2peak: 59.2 ± 6.8 ml·kg-1·min-1 completed seven laboratory visits which involved the determination of individual time to peak alkalosis following sodium bicarbonate (NaHCO3) ingestion, an environment specific ramp test (e.g. normoxia and hypoxia) and four x 3 min critical power (CP) tests under different experimental conditions. Participants completed four trials: alkalosis normoxia (ALN); placebo normoxia (PLN); alkalosis hypoxia (ALH); and placebo hypoxia (PLH). Pre-exercise administration of 0.3 g.kg-1 BM of NaHCO3 was used to induce alkalosis. Environmental conditions were set at either normobaric hypoxia (FiO2: 14.5%) or normoxia (FiO2: 20.93%). RESULTS: An increase in W' was observed with pre-exercise alkalosis under both normoxic (PLN: 15.1 ± 6.2 kJ vs. ALN: 17.4 ± 5.1 kJ; P = 0.006) and hypoxic conditions (ALN: 15.2 ± 4.9 kJ vs. ALN: 17.9 ± 5.2 kJ; P < 0.001). Pre-exercise alkalosis resulted in a larger reduction in bicarbonate ion (HCO3-) concentrations during exercise in both environmental conditions (p < 0.001) and a greater blood lactate accumulation under hypoxia (P = 0.012). CONCLUSION: Pre-exercise alkalosis substantially increased W' and, therefore, may determine tolerance to exercise above CP under normoxic and hypoxic conditions. This may be due to NaHCO3 increasing HCO3- buffering capacity to delay exercise-induced acidosis, which may, therefore, enhance anaerobic energy contribution.


Assuntos
Alcalose/metabolismo , Tolerância ao Exercício , Exercício Físico , Hipóxia/metabolismo , Adulto , Alcalose/etiologia , Alcalose/fisiopatologia , Limiar Anaeróbio , Humanos , Hipóxia/fisiopatologia , Masculino , Consumo de Oxigênio , Bicarbonato de Sódio/efeitos adversos
10.
Int J Sport Nutr Exerc Metab ; 27(5): 429-438, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28530505

RESUMO

This study evaluated the ingestion of sodium bicarbonate (NaHCO3) on postexercise acid-base balance recovery kinetics and subsequent high-intensity cycling time to exhaustion. In a counterbalanced, crossover design, nine healthy and active males (age: 23 ± 2 years, height: 179 ± 5 cm, body mass: 74 ± 9 kg, peak mean minute power (Wpeak) 256 ± 45 W, peak oxygen uptake (V̇O2peak) 46 ± 8 ml.kg-1.min-1) performed a graded incremental exercise test, two familiarization and two experimental trials. Experimental trials consisted of cycling to volitional exhaustion (TLIM1) at 100% WPEAK on two occasions (TLIM1 and TLIM2) interspersed by a 90 min passive recovery period. Using a double-blind approach, 30 min into a 90 min recovery period participants ingested either 0.3 g.kg-1 body mass sodium bicarbonate (NaHCO3) or a placebo (PLA) containing 0.1 g.kg-1 body mass sodium chloride (NaCl) mixed with 4 ml.kg-1 tap water and 1 ml.kg-1 orange squash. The mean differences between TLIM2 and TLIM1 was larger for PLA compared with NaHCO3 (-53 ± 53 vs. -20 ± 48 s; p = .008, d = 0.7, CI =-0.3, 1.6), indicating superior subsequent exercise time to exhaustion following NaHCO3. Blood lactate [Bla-] was similar between treatments post TLIM1, but greater for NaHCO3 post TLIM2 and 5 min post TLIM2. Ingestion of NaHCO3 induced marked increases (p < .01) in both blood pH (+0.07 ± 0.02, d = 2.6, CI = 1.2, 3.7) and bicarbonate ion concentration [HCO3-] (+6.8 ± 1.6 mmo.l-1, d = 3.4, CI = 1.8, 4.7) compared with the PLA treatment, before TLIM2. It is likely both the acceleration of recovery, and the marked increases of acid-base after TLIM1 contributed to greater TLIM2 performance compared with the PLA condition.


Assuntos
Equilíbrio Ácido-Base , Ciclismo/fisiologia , Fadiga/metabolismo , Bicarbonato de Sódio/administração & dosagem , Adulto , Alcalose , Bicarbonatos/sangue , Método Duplo-Cego , Ingestão de Alimentos , Teste de Esforço , Frequência Cardíaca , Humanos , Concentração de Íons de Hidrogênio , Masculino , Consumo de Oxigênio , Adulto Jovem
11.
Nutrients ; 16(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39275326

RESUMO

Rugby union is an intermittent team sport with variability in body composition and match-play demands between positions which requires careful consideration for individual dietary requirements. While previous reviews have detailed the macronutrient intake in rugby players, none have discussed the further determinants of dietary intake in this population. Therefore, the purpose of the current review was to summarise the current evidence detailing dietary intake in rugby union players, report on contemporary nutritional research themes, and provide recommendations for athletes, nutritionists, and other stakeholders. In total, eighteen articles report on dietary intake in rugby players, with only one of these detailing dietary intake in female athletes. Recent studies have reported on both protein and carbohydrate periodisation practices in rugby union players; however, there is currently limited evidence as to the influence of these on performance, recovery, and well-being. Factors influencing eating patterns, the impact of sports nutritionists on dietary intake, and food consumption in catered and non-catered environments has been explored in isolated studies. Nutrition knowledge levels in rugby players have been reported in several studies; however, the influence this has on dietary intake in rugby players is unknown. Collectively, despite new contemporary themes emerging in the literature concerning dietary intake in rugby players, the studies are isolated; as such, there is limited scope to the translatability of information due to heterogeneity in sex, level of play, and location of participants. Given this, future research should aim to build upon the themes identified in this review in combination to support practitioners working within their specific environments. This will subsequently build towards the generation of rugby-specific recommendations.


Assuntos
Futebol Americano , Humanos , Futebol Americano/fisiologia , Feminino , Dieta , Fenômenos Fisiológicos da Nutrição Esportiva , Masculino , Atletas/psicologia , Comportamento Alimentar/fisiologia , Proteínas Alimentares/administração & dosagem , Ingestão de Alimentos/fisiologia , Necessidades Nutricionais , Carboidratos da Dieta/administração & dosagem , Composição Corporal , Ingestão de Energia , Rugby
12.
Sports Med ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122982

RESUMO

BACKGROUND: A novel sodium bicarbonate (SB) product has come to market named the "Bicarb System" (M-SB; Maurten AB, Gothenburg, Sweden). It claims to minimise gastrointestinal (GI) discomfort whilst still improving exercise performance. AIM: To investigate the effects of M-SB ingestion on repeated 4 km cycling time trials (TT1 and TT2) in well-trained male cyclists. METHODS: The study recruited ten well-trained cyclists (maximal oxygen uptake ( V ˙ O 2 max ): 67 ± 4 ml kg-1 min-1 BM; peak power output (PPO) at V ˙ O 2 max : 423 ± 21 W) to take part in this randomised, crossover and double-blinded study. Following one visit to determine V ˙ O 2 max , participants completed a second visit to identify individual time to peak blood bicarbonate (HCO3-) (ITTP) in a rested state. Visit three was a familiarisation trial mimicking the experimental procedures. Visits four to seven consisted of completing 2 × 4 km cycling TTs separated by 45 min passive recovery, following one of either: 0.3 g kg-1 BM M-SB, 0.21 g kg-1 BM sodium chloride (placebo; PLA) in vegetarian capsules (size 00), or a control trial (CON). Supplements (M-SB or placebo) were ingested pre-exercise at their respective ITTP. RESULTS: Performance in TT1 was faster in the M-SB condition compared with TT1 in CON (- 5.1 s; p = 0.004) and PLA (- 3.5 s; p < 0.001). In TT2, performance was also significantly faster in the M-SB condition compared with CON (- 4.4 s; p = 0.018) or PLA (- 4.1 s; p = 0.002). Total aggregated GI symptoms were generally low and not significantly different between PLA and the M-SB conditions for a range of symptoms. CONCLUSIONS: The ingestion of M-SB improves repeated 4 km cycling TT performance and the recovery of acid-base balance between bouts, whilst causing minimal GI discomfort.

13.
Sports Med Open ; 10(1): 17, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356036

RESUMO

BACKGROUND: A new commercially available sodium bicarbonate (SB) supplement claims to limit gastrointestinal (GI) discomfort and increase extracellular buffering capacity. To date, no available data exists to substantiate such claims. Therefore, the aim of this study was to measure blood acid-base balance and GI discomfort responses following the ingestion of SB using the novel "Bicarb System" (M-SB). Twelve well-trained male cyclists completed this randomised crossover designed study. Maximal oxygen consumption was determined in visit one, whilst during visits two and three participants ingested 0.3 g∙kg-1 BM SB using M-SB (Maurten, Sweden) or vegetarian capsules (C-SB) in a randomised order. Finger prick capillary blood samples were measured every 30 min for pH, bicarbonate (HCO3-), and electrolytes (potassium, chloride, calcium, and sodium), for 300 min. Visual analogue scales (VAS) were used to assess GI symptoms using the same time intervals. RESULTS: Peak HCO3- was 0.95 mmol∙L-1 greater following M-SB (p = 0.023, g = 0.61), with time to peak HCO3- achieved 38.2 min earlier (117 ± 37 vs. 156 ± 36 min; p = 0.026, r = 0.67) and remained elevated for longer (p = 0.043, g = 0.51). No differences were observed for any electrolytes between the conditions. Aggregated GI discomfort was reduced by 79 AU following M-SB (p < 0.001, g = 1.11), with M-SB reducing stomach cramps, bowel urgency, diarrhoea, belching, and stomach-ache compared to C-SB. CONCLUSIONS: This is the first study to report that M-SB can increase buffering capacity and reduce GI discomfort. This presents a major potential benefit for athletes considering SB as an ergogenic supplement as GI discomfort is almost eliminated. Future research should determine if M-SB is performance enhancing.


The novel 'Bicarb System' (M-SB) reduced, and almost eliminated the gastrointestinal (GI) discomfort compared to vegetarian capsules (C-SB). The changes in acid-base balance following ingestion of M-SB were significantly greater compared to C-SB. It is unkown if this would translate to increased performance benefits, however, and the next step therefore is to determine the performance responses from M-SB. The increase in HCO3 was sustained >5 mmol L−1 HCO3 for longer with M-SB ingestion versus C-SB. This might suggest there is an "ergogenic window", and ingestion timing could therefore be flexible prior to exercise.

14.
Nutrients ; 16(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39339723

RESUMO

Inconsistent swimming performances are often observed following sodium bicarbonate (NaHCO3) ingestion, possibly because the time taken to reach peak blood buffering capacity is highly variable between individuals. Personalising NaHCO3 ingestion based on time-to-peak blood bicarbonate (HCO3-) could be a solution; however, this strategy is yet to be explored in swimming, or adequately compared to standardised NaHCO3 approaches. Therefore, six highly trained female swimmers ingested 0.3 g·kg BM-1 NaHCO3 in capsules to pre-determine their individual time-to-peak blood HCO3-. They then participated in three experimental trials, consisting of a 6 × 75 m repeated sprint swimming test, followed by a 200 m maximal time trial effort after 30 min active recovery. These experiments were conducted consuming a supplement at three different timings: individualised NaHCO3 (IND: 105-195 min pre-exercise); standardised NaHCO3 (STND: 150 min pre-exercise); and placebo (PLA: 90 min pre-exercise). Both NaHCO3 strategies produced similar increases in blood HCO3- prior to exercise (IND: +6.8 vs. STND: +6.1 mmol·L-1, p < 0.05 vs. PLA) and fully recovered blood HCO3- during active recovery (IND: +6.0 vs. STND: +6.3 mmol·L-1 vs. PLA, p < 0.05). However, there were no improvements in the mean 75 m swimming time (IND: 48.2 ± 4.8 vs. STND: 48.9 ± 5.8 vs. PLA: 49.1 ± 5.1 s, p = 0.302) nor 200 m maximal swimming (IND: 133.6 ± 5.0 vs. STND: 133.6 ± 4.7 vs. PLA: 133.3 ± 4.4 s, p = 0.746). Regardless of the ingestion strategy, NaHCO3 does not appear to improve exercise performance in highly trained female swimmers.


Assuntos
Desempenho Atlético , Bicarbonato de Sódio , Natação , Humanos , Bicarbonato de Sódio/administração & dosagem , Bicarbonato de Sódio/farmacologia , Feminino , Natação/fisiologia , Desempenho Atlético/fisiologia , Adulto Jovem , Suplementos Nutricionais , Atletas , Adulto , Adolescente
15.
Nutrients ; 16(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39203900

RESUMO

This systematic review and meta-analysis investigated the influence of dietary nitrate supplementation on performance metrics during cycling sprint exercise according to the PRISMA guidelines. Searches were conducted on MEDLINE, PubMed, ScienceDirect, Scopus, and SPORTDiscus databases up to September 2023. Inclusion criteria were healthy recreationally active men and women who consumed nitrate-rich and nitrate-deficient beetroot juice to assess performance outcomes of mean power, peak power, time-to-peak power, and minimum power during 30-s cycling sprints. Risk of bias was assessed using the Cochrane Risk of Bias 2 and TESTEX tools and funnel plots. A random effects model was performed on six studies and showed that dietary nitrate had significant effects on time-to-peak power (SMD: -0.66, 95% CI: -1.127 to -0.192, p = 0.006) but not on mean power, peak power, or minimum power. Subgroup analysis revealed that an acute low nitrate dose improved time-to-peak power (SMD: -0.977, 95% CI: -1.524 to -0.430, p < 0.001) but not after a multiday moderate nitrate dose (SMD: -0.177, 95% CI: -0.619 to -0.264, p = 0.431). These data suggest that acute nitrate supplementation can benefit time-to-peak power during 30-s cycling sprints, but due to the limited availability of data and heterogeneity in methodology, these results should be interpreted with caution. There was insufficient data on women to analyze sex-based differences. Future studies are required to provide insight on how supplementation regimen and population impact the effects of dietary nitrate for enhancing cycling sprint performance.


Assuntos
Desempenho Atlético , Ciclismo , Suplementos Nutricionais , Nitratos , Humanos , Nitratos/administração & dosagem , Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Feminino , Masculino , Adulto , Beta vulgaris , Sucos de Frutas e Vegetais
16.
Nutrients ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571244

RESUMO

The aim of this study was to observe the nutritional supplement practices of highly trained swimmers on a national talent pathway, since it is often reported that swimmers engage in widespread supplement use at the elite level. Thus, this study employed a validated supplement intake questionnaire with forty-four swimmers from a high-performance swimming club, which had three distinct talent stages: development (aged 11-14 years, n = 20), age-group (aged 13-17 years, n = 13), and national level (aged ≥ 16 years, n = 11). Ninety-eight percent of the interviewed swimmers reported using at least one supplement, with performance (34%) and recovery (19%) cited as the primary reasons. National swimmers used more total supplements (8.1 ± 3.4 supplements) compared to age-group (4.8 ± 2.0 supplements, p = 0.003, g = 1.17) and development (3.9 ± 1.7 supplements, p < 0.001, g = 1.69) swimmers, mostly because of a greater intake of ergogenic aids (2.4 ± 1.4 supplements vs. age-group: 0.5 ± 0.5 supplements, p < 0.001, g = 1.12; vs. development: 0.1 ± 0.2 supplements, p < 0.001, g = 1.81). Parents/guardians were the primary supplement informants of development swimmers (74%, p < 0.001, V = 0.50), whereas performance nutritionists informed ~50% of supplements used by age-group and national swimmers (p < 0.001, V = 0.51). Based on these results, supplement education and greater focus on basic sport nutrition practices may be required for parents/guardians at the development level. Moreover, further research is needed to support the high number of ergogenic aids used by national swimmers, with the efficacy of these supplements currently equivocal in the applied setting.


Assuntos
Atletas , Natação , Humanos , Suplementos Nutricionais , Estado Nutricional , Reino Unido
17.
J Int Soc Sports Nutr ; 20(1): 2216678, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37227399

RESUMO

OBJECTIVE: This study examined the effects of oral and topical (PR Lotion; Momentous) sodium bicarbonate (NaHCO3) during a battery of team sport-specific exercise tests. METHOD: In a block randomized, crossover, double-blind, placebo-controlled design, 14 recreationally trained male team sport athletes performed a familiarization visit and three experimental trials receiving: (i) 0.3 g·kg-1 body mass (BM) NaHCO3 in capsules + placebo lotion (SB-ORAL), (ii) placebo capsules +0.9036 g·kg-1 BM PR Lotion (SB-LOTION), or (iii) placebo capsules + placebo lotion (PLA). Supplements were given ~120 min prior to the team sport-specific exercise tests: countermovement jumps (CMJ), 8 × 25 m repeated sprints and Yo-Yo Intermittent Recovery Level 2 (Yo-Yo IR2). Blood acid-base balance (pH, bicarbonate) and electrolytes (sodium, potassium) were measured throughout. Rating of perceived exertion (RPE) was recorded after each sprint and post-Yo-Yo IR2. RESULTS: Distance covered during the Yo-Yo IR2 was 21% greater for SB-ORAL compared with PLA (+94 m; p = 0.009, d = 0.64) whereas performance was only 7% greater for SB-LOTION compared with PLA (480 ± 122 vs. 449 ± 110 m; p = 0.084). Total completion time for the 8 × 25 m repeated sprint test was 1.9% faster for SB-ORAL compared with PLA (-0.61 s; p = 0.020, d = 0.38) and 2.0% faster for SB-LOTION compared with PLA (-0.64 s; p = 0.036, d = 0.34). CMJ performance was similar between treatments (p > 0.05). Blood acid-base balance and electrolytes were significantly improved for SB-ORAL compared with PLA, but no differences were observed for SB-LOTION. Compared to PLA, RPE was lower for SB-LOTION after the fifth (p = 0.036), sixth (p = 0.012), and eighth (p = 0.040) sprints and for SB-ORAL after the sixth (p = 0.039) sprint. CONCLUSIONS: Oral NaHCO3 improved 8 × 25 m repeated sprint (~2%) and Yo-Yo IR2 performance (21%). Similar improvements in repeated sprint times were observed for topical NaHCO3 (~2%), but no significant benefits were reported for Yo-Yo IR2 distance or blood acid-base balance compared to PLA. These findings suggest that PR Lotion might not be an effective delivery system for transporting NaHCO3 molecules across the skin and into systematic circulation, therefore further research is needed to elucidate the physiological mechanisms responsible for the ergogenic effects of PR Lotion.


Assuntos
Desempenho Atlético , Corrida , Humanos , Masculino , Atletas , Desempenho Atlético/fisiologia , Método Duplo-Cego , Teste de Esforço , Poliésteres , Corrida/fisiologia , Bicarbonato de Sódio/farmacologia , Esportes de Equipe , Estudos Cross-Over
18.
Prog Cardiovasc Dis ; 76: 61-68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36462554

RESUMO

Curtailing elite sports during the coronavirus disease 2019 (COVID-19) pandemic was necessary to prevent widespread viral transmission. Now that elite sport and international competitions have been largely restored, there is still a need to devise appropriate screening and management pathways for athletes with a history of, or current, COVID-19 infection. These approaches should support the decision-making process of coaches, sports medicine practitioners and the athlete about the suitability to return to training and competition activities. In the absence of longitudinal data sets from athlete populations, the incidence of developing prolonged and debilitating symptoms (i.e., Long COVID) that affects a return to training and competition remains a challenge to sports and exercise scientists, sports medicine practitioners and clinical groups. As the world attempts to adjust toward 'living with COVID-19' the very nature of elite and international sporting competition poses a risk to athlete welfare that must be screened for and managed with bespoke protocols that consider the cardiovascular implications for performance.


Assuntos
COVID-19 , Esportes , Humanos , COVID-19/epidemiologia , Volta ao Esporte , Síndrome de COVID-19 Pós-Aguda , Atletas
19.
Eur J Sport Sci ; 22(12): 1856-1864, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704539

RESUMO

The purpose of this study was to explore the effect of individualised sodium bicarbonate (NaHCO3) supplementation according to a pre-established individual time-to-peak (TTP) blood bicarbonate (HCO3-) on 4-km cycling time trial (TT) performance in the heat. Eleven recreationally trained male cyclists (age: 28 ± 6 years, height: 180 ± 6 cm, body mass: 80.5 ± 8.4 kg) volunteered for this study in a randomised, crossover, triple-blind, placebo-controlled design. An initial visit was conducted to determine TTP HCO3- following 0.2 g.kg-1 body mass (BM) NaHCO3 ingestion. Subsequently, on three separate occasions, participants completed a 4-km cycling TT in the heat (30 degrees centigrade; °C) (relative humidity ∼40%) following ingestion of either NaHCO3 (0.2 g.kg-1 body mass), a sodium chloride placebo (0.2 g.kg-1 BM; PLA) at the predetermined individual TTP HCO3-, or no supplementation (control; CON) . Absolute peak [HCO3-] prior to the 4-km cycling TT's was elevated for NaHCO3 compared to PLA (+2.8 mmol.l-1; p = 0.002; g = 2.2) and CON (+2.5 mmol.l-1; p < 0.001; g = 2.1). Completion time following NaHCO3 was 5.6 ± 3.2 s faster than PLA (1.6%; CI: 2.8, 8.3; p = 0.001; g = 0.2) and 4.7 ± 2.8 s faster than CON (1.3%; CI: 2.3, 7.1; p = 0.001; g = 0.2). These results demonstrate that NaHCO3 ingestion at a pre-established individual TTP HCO3- improves 4-km cycling TT performance in the heat, likely through enhancing buffering capacity.Highlights This is the first time NaHCO3 ingestion has been shown to improve 4-km cycling TT performance in conditions of high ambient heat.A smaller dose of NaHCO3 (0.2 g.kg-1 BM) is ergogenic in the heat, which is smaller than the dose typically ingested for sports performance (0.3 g.kg-1 BM). This is important, as gastrointestinal discomfort is typically lower as the dose reduces.This study suggests that the individualised time-to-peak HCO3- ingestion strategy with lower doses of NaHCO3 is an ergogenic strategy in conditions of high ambient heat.


Assuntos
Desempenho Atlético , Bicarbonato de Sódio , Masculino , Humanos , Adulto Jovem , Adulto , Bicarbonato de Sódio/farmacologia , Bicarbonatos/farmacologia , Temperatura Alta , Poliésteres , Método Duplo-Cego
20.
Sci Med Footb ; 6(4): 519-527, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35094667

RESUMO

The study examined the synergistic and independent effects of carbohydrate-caffeine mouth rinse on repeated sprint performance during simulated soccer match play. Nine male soccer players (21 ± 3 years, 1.75 ± 0.05 m, 68.0 ± 9.0 kg) completed four trials with either 6 mg·kg-1 caffeine + 10% maltodextrin (CHO+CAFMR), 6 mg·kg-1 caffeine (CAFMR), 10% maltodextrin (CHOMR), water (PLA) in a block randomised, double-blinded, counterbalanced and crossover manner separated by minimum 96 h. All solutions were taste-matched and a carbohydrate-rich meal (2 g·kg-1body mass) was provided 2 h before each trial. Each trial consisted of a 90-min soccer-specific aerobic field test (SAFT90) and two bouts of repeated sprint ability tests (RSAT; 6 × 6 s sprints with 24 s recovery) completed at 0 min and 75th min of SAFT90. A 25 ml solution of either CHO+CAFMR, CAFMR, CHOMR or PLA was rinsed immediately before the second RSAT (75 min). Mean power output, peak power output (PPO) or fatigue index (FI) was not impacted by any treatment during the 75th min RAST (p > 0.05). These results suggest that carbohydrate and/or caffeine mouth rinses do not have an ergogenic effect during simulated soccer exercise after a high carbohydrate meal.


Assuntos
Desempenho Atlético , Futebol , Humanos , Masculino , Cafeína/farmacologia , Carboidratos , Antissépticos Bucais/farmacologia , Poliésteres
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa