Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 95(15): e0032721, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33963054

RESUMO

The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domains; previously C6orf106) was identified as a proviral factor for Hendra virus infection and was recently characterized to function as an inhibitor of type I interferon expression. Here, we have utilized transcriptome sequencing (RNA-seq) to define cellular pathways regulated by ILRUN in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of Caco-2 cells. We find that inhibition of ILRUN expression by RNA interference alters transcription profiles of numerous cellular pathways, including upregulation of the SARS-CoV-2 entry receptor ACE2 and several other members of the renin-angiotensin aldosterone system. In addition, transcripts of the SARS-CoV-2 coreceptors TMPRSS2 and CTSL were also upregulated. Inhibition of ILRUN also resulted in increased SARS-CoV-2 replication, while overexpression of ILRUN had the opposite effect, identifying ILRUN as a novel antiviral factor for SARS-CoV-2 replication. This represents, to our knowledge, the first report of ILRUN as a regulator of the renin-angiotensin-aldosterone system (RAAS). IMPORTANCE There is no doubt that the current rapid global spread of COVID-19 has had significant and far-reaching impacts on our health and economy and will continue to do so. Research in emerging infectious diseases, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is growing rapidly, with new breakthroughs in the understanding of host-virus interactions to assist with the development of innovative and exciting therapeutic strategies. Here, we present the first evidence that modulation of the human protein-coding gene ILRUN functions as an antiviral factor for SARS-CoV-2 infection, likely through its newly identified role in regulating the expression of SARS-CoV-2 entry receptors ACE2, TMPRSS2, and CTSL. These data improve our understanding of biological pathways that regulate host factors critical to SARS-CoV-2 infection, contributing to the development of antiviral strategies to deal with the current SARS-CoV-2 pandemic.


Assuntos
Enzima de Conversão de Angiotensina 2/biossíntese , COVID-19/metabolismo , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , Células CACO-2 , Catepsina L/biossíntese , Catepsina L/genética , Chlorocebus aethiops , Humanos , Proteínas de Neoplasias/genética , Sistema Renina-Angiotensina , SARS-CoV-2/genética , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética , Células Vero
2.
J Virol ; 87(7): 3782-91, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23345523

RESUMO

Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease.


Assuntos
Vírus Hendra/fisiologia , MicroRNAs/metabolismo , Replicação Viral/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Proteínas de Ligação a DNA , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , NF-kappa B/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Microorganisms ; 10(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056582

RESUMO

Influenza A viruses (IAV) pose a constant threat to human and poultry health. Of particular interest are the infections caused by highly pathogenic avian influenza (HPAI) viruses, such as H5N1, which cause significant production issues. In response to influenza infection, cells activate immune mechanisms that lead to increased interferon (IFN) production. To investigate how alterations in the interferon signaling pathway affect the cellular response to infection in the chicken, we used CRISPR/Cas9 to generate a chicken cell line that lacks a functional the type I interferon receptor (IFNAR1). We then assessed viral infections with the WSN strain of influenza. Cells lacking a functional IFNAR1 receptor showed reduced expression of the interferon stimulated genes (ISG) such as Protein Kinase R (PKR) and Myxovirus resistance (Mx) and were more susceptible to viral infection with WSN. We further investigated the role or IFNAR1 on low pathogenicity avian influenza (LPAI) strains (H7N9) and a HPAI strain (H5N1). Intriguingly, Ifnar-/- cells appeared more resistant than WT cells when infected with HPAI virus, potentially indicating a different interaction between H5N1 and the IFN signaling pathway. Our findings support that ChIFNAR1 is a key component of the chicken IFN signaling pathway and these data add contributions to the field of host-avian pathogen interaction and innate immunity in chickens.

4.
Front Immunol ; 13: 974210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275684

RESUMO

The zoonotic H7N9 avian influenza (AI) virus first emerged in 2013 as a low pathogenic (LPAI) strain, and has repeatedly caused human infection resulting in severe respiratory illness and a mortality of ~39% (>600 deaths) across five epidemic waves. This virus has circulated in poultry with little to no discernible clinical signs, making detection and control difficult. Contrary to published data, our group has observed a subset of specific pathogen free chickens infected with the H7N9 virus succumb to disease, showing clinical signs consistent with highly pathogenic AI (HPAI). Viral genome sequencing revealed two key mutations had occurred following infection in the haemagglutinin (HA 226 L>Q) and nucleoprotein (NP 373 A>T) proteins. We further investigated the impact of the NP mutation and demonstrated that only chickens bearing a single nucleotide polymorphism (SNP) in their IFITM1 gene were susceptible to the H7N9 virus. Susceptible chickens demonstrated a distinct loss of CD8+ T cells from the periphery as well as a dysregulation of IFNγ that was not observed for resistant chickens, suggesting a role for the NP mutation in altered T cell activation. Alternatively, it is possible that this mutation led to altered polymerase activity, as the mutation occurs in the NP 360-373 loop which has been previously show to be important in RNA binding. These data have broad ramifications for our understanding of the pathobiology of AI in chickens and humans and provide an excellent model for investigating the role of antiviral genes in a natural host species.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Influenza Aviária/genética , Influenza Aviária/epidemiologia , Subtipo H7N9 do Vírus da Influenza A/genética , Galinhas/genética , Hemaglutininas/genética , Nucleoproteínas/genética , Linfócitos T CD8-Positivos/patologia , Mutação , Antivirais , RNA
5.
NPJ Vaccines ; 6(1): 67, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972565

RESUMO

Vaccines against SARS-CoV-2 are likely to be critical in the management of the ongoing pandemic. A number of candidates are in Phase III human clinical trials, including ChAdOx1 nCoV-19 (AZD1222), a replication-deficient chimpanzee adenovirus-vectored vaccine candidate. In preclinical trials, the efficacy of ChAdOx1 nCoV-19 against SARS-CoV-2 challenge was evaluated in a ferret model of infection. Groups of ferrets received either prime-only or prime-boost administration of ChAdOx1 nCoV-19 via the intramuscular or intranasal route. All ChAdOx1 nCoV-19 administration combinations resulted in significant reductions in viral loads in nasal-wash and oral swab samples. No vaccine-associated adverse events were observed associated with the ChAdOx1 nCoV-19 candidate, with the data from this study suggesting it could be an effective and safe vaccine against COVID-19. Our study also indicates the potential for intranasal administration as a way to further improve the efficacy of this leading vaccine candidate.

6.
PLoS One ; 11(9): e0162375, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27631618

RESUMO

Avian influenza viruses of H5 subtype can cause highly pathogenic disease in poultry. In March 2014, a new reassortant H5N6 subtype highly pathogenic avian influenza virus emerged in Lao People's Democratic Republic. We have assessed the pathogenicity, pathobiology and immunological responses associated with this virus in chickens. Infection caused moderate to advanced disease in 6 of 6 chickens within 48 h of mucosal inoculation. High virus titers were observed in blood and tissues (kidney, spleen, liver, duodenum, heart, brain and lung) taken at euthanasia. Viral antigen was detected in endothelium, neurons, myocardium, lymphoid tissues and other cell types. Pro-inflammatory cytokines were elevated compared to non-infected birds. Our study confirmed that this new H5N6 reassortant is highly pathogenic, causing disease in chickens similar to that of Asian H5N1 viruses, and demonstrated the ability of such clade 2.3.4-origin H5 viruses to reassort with non-N1 subtype viruses while maintaining a fit and infectious phenotype. Recent detection of influenza H5N6 poultry infections in Lao PDR, China and Viet Nam, as well as six fatal human infections in China, demonstrate that these emergent highly pathogenic H5N6 viruses may be widely established in several countries and represent an emerging threat to poultry and human populations.


Assuntos
Galinhas/microbiologia , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Vírus Reordenados/patogenicidade , Animais , Cães , Vírus da Influenza A/isolamento & purificação , Laos , Células Madin Darby de Rim Canino , Vírus Reordenados/isolamento & purificação , Carga Viral
7.
J Bone Miner Res ; 17(2): 200-9, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11811550

RESUMO

Originally, leptin was described as a product of adipocytes that acts on the hypothalamus to regulate appetite. However, subsequently, it has been shown that leptin receptors are distributed widely and that leptin has diverse functions, including promotion of hemopoietic and osteoblastic differentiation. It has been recognized for some time that both serum leptin and bone mass are correlated positively to body fat mass and, recently, we have shown a direct positive relationship between serum leptin and bone mass in nonobese women. We now report that leptin inhibits osteoclast generation in cultures of human peripheral blood mononuclear cells (PBMCs) and murine spleen cells incubated on bone in the presence of human macrophage colony-stimulating factor (hM-CSF) and human soluble receptor activator of NF-kappaB ligand (sRANKL). The half-maximal concentration inhibitory of leptin was approximately 20 nM in the presence of sRANKL at 40 ng/ml but decreased to approximately 2 nM when sRANKL was used at 5 ng/ml. The majority of the inhibitory effect occurred in the first week of the 3-week cultures. Inhibition did not occur when the PBMC cultures were washed vigorously to remove nonadherent cells or when purified CD14+ monocytes were used to generate osteoclasts, indicating an indirect or permissive effect via CD14- PBMC. Leptin increased osteoprotegerin (OPG) messenger RNA (mRNA) and protein expression in PBMC but not in CD14+ cells, suggesting that the inhibitory effect may be mediated by the RANKL/RANK/OPG system. Leptin may act locally to increase bone mass and may contribute to linkage of bone formation and resorption.


Assuntos
Leptina/farmacologia , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Receptores de Superfície Celular , Animais , Osso e Ossos/citologia , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Glicoproteínas/efeitos dos fármacos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/farmacologia , Camundongos , Monócitos/efeitos dos fármacos , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoprotegerina , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores para Leptina , Receptores do Fator de Necrose Tumoral , Baço/citologia , Baço/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
8.
J Steroid Biochem Mol Biol ; 88(3): 311-20, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15120425

RESUMO

We have developed hematopoietic cells resistant to the cytotoxic effects of oxysterols. Oxysterol-resistant HL60 cells were generated by continuous exposure to three different oxysterols-25-hydroxycholesterol (25-OHC), 7-beta-hydroxycholesterol (7beta-OHC) and 7-keto-cholesterol (7kappa-C). We investigated the effects of 25-OHC, 7beta-OHC, 7kappa-C and the apoptotic agent staurosporine on these cells. The effect of the calcium channel blocker nifedipine on oxysterol cytotoxicity was also investigated. Differential display and real-time PCR were used to quantitate gene expression of oxysterol-sensitive and -resistant cells. Our results demonstrate that resistance to the cytotoxic effects of oxysterols is relatively specific to the type of oxysterol, and that the cytotoxicity of 25-OHC but not that of 7beta-OHC and 7kappa-C, appears to occur by a calcium dependent mechanism. Oxysterol-resistant cells demonstrated no significant difference in the expression of several genes previously implicated in oxysterol resistance, but expressed the bcl-2 gene at significantly lower levels than those observed in control cells. We identified three novel genes differentially expressed in resistant cells when compared to HL60 control cells. Taken together, the results of this study reveal potentially novel mechanisms of oxysterol cytotoxicity and resistance, and indicate that cytotoxicity of 25-OHC, 7beta-OHC and 7kappa-C occur by independent, yet overlapping mechanisms.


Assuntos
Leucemia/metabolismo , Esteróis/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Células HL-60 , Humanos , Dados de Sequência Molecular , Nifedipino/farmacologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa