Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Exp Biol ; 224(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34734633

RESUMO

The function of a muscle is impacted by its line of action, activity timing and contractile characteristics when active, all of which have the potential to vary within a behavior. One function of the hyoid musculature is to move the hyoid bone during swallowing, yet we have little insight into how their lines of action and contractile characteristics might change during a swallow. We used an infant pig model to quantify the contractile characteristics of four hyoid muscles during a swallow using synchronized electromyography, fluoromicrometry and high-speed biplanar videofluoroscopy. We also estimated muscle line of action during a swallow using contrast-enhanced CT-scanned muscles animated to move with the hyoid bone and found that as the hyoid elevated, the line of action of the muscles attached to it became greater in depression. We also found that muscles acted eccentrically and concentrically, which was correlated with hyoid movement. This work contributes to our understanding of how the musculature powering feeding functions during swallowing.


Assuntos
Deglutição , Osso Hioide , Animais , Cinerradiografia , Eletromiografia , Contração Muscular , Suínos
2.
Dysphagia ; 36(1): 120-129, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32328794

RESUMO

Feeding difficulties are especially prevalent in preterm infants, although the mechanisms driving these difficulties are poorly understood due to a lack of data on healthy infants. One potential mechanism of dysphagia in adults is correlated with bolus volume. Yet, whether and how bolus volume impacts swallow safety in infant feeding is unknown. A further complication for safe infant swallowing is recurrent laryngeal nerve (RLN) injury due to patent ductus arteriosus surgery, which exacerbates the issues that preterm infants face and can increase the risk of dysphagia. Here, we used a validated animal model feeding freely to test the effect of preterm birth, postnatal maturation and RLN lesion and their interactions on swallow safety. We also tested whether bolus size differed with lesion or birth status, and the relationship between bolus size and swallow safety. We found very little effect of lesion on swallow safety, and preterm infants did not experience more penetration or aspiration than term infants. However, term infants swallowed larger boluses than preterm infants, even after correcting for body size. Bolus size was the primary predictor of penetration or aspiration, with larger boluses being more likely to result in greater degrees of dysphagia irrespective of age or lesion status. These results highlight that penetration and aspiration are likely normal occurrences in infant feeding. Further, when comorbidities, such as RLN lesion or preterm birth are present, limiting bolus size may be an effective means to reduce incidences of penetration and aspiration.


Assuntos
Transtornos de Deglutição , Nascimento Prematuro , Animais , Deglutição , Transtornos de Deglutição/etiologia , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Gravidez
3.
J Neurophysiol ; 124(6): 1743-1753, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966748

RESUMO

Understanding the interactions between neural and musculoskeletal systems is key to identifying mechanisms of functional failure. Mammalian swallowing is a complex, poorly understood motor process. Lesion of the recurrent laryngeal nerve, a sensory and motor nerve of the upper airway, results in airway protection failure (liquid entry into the airway) during swallowing through an unknown mechanism. We examined how muscle and kinematic changes after recurrent laryngeal nerve lesion relate to airway protection in eight infant pigs. We tested two hypotheses: 1) kinematics and muscle function will both change in response to lesion in swallows with and without airway protection failure, and 2) differences in both kinematics and muscle function will predict whether airway protection failure occurs in lesion and intact pigs. We recorded swallowing with high-speed videofluoroscopy and simultaneous electromyography of oropharyngeal muscles pre- and postrecurrent laryngeal nerve lesion. Lesion changed the relationship between airway protection and timing of tongue and hyoid movements. Changes in onset and duration of hyolaryngeal muscles postlesion were less associated with airway protection outcomes. The tongue and hyoid kinematics all predicted airway protection outcomes differently pre- and postlesion. Onset and duration of activity in only one infrahyoid and one suprahyoid muscle showed a change in predictive relationship pre- and postlesion. Kinematics of the tongue and hyoid more directly reflect changes in airway protections pre- and postlesion than muscle activation patterns. Identifying mechanisms of airway protection failure requires specific functional hypotheses that link neural motor outputs to muscle activation to specific movements.NEW & NOTEWORTHY Kinematic and muscle activity patterns of oropharyngeal structures used in swallowing show different patterns of response to lesion of the recurrent laryngeal nerve. Understanding how muscles act on structures to produce behavior is necessary to understand neural control.


Assuntos
Deglutição/fisiologia , Músculos Laríngeos/fisiopatologia , Nervos Laríngeos/patologia , Músculos do Pescoço/fisiopatologia , Músculos Faríngeos/fisiopatologia , Animais , Fenômenos Biomecânicos/fisiologia , Eletromiografia , Fluoroscopia , Suínos
4.
Pediatr Res ; 87(4): 656-661, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31645052

RESUMO

BACKGROUND: The formation of a bolus of food is critical for proper feeding function, and there is substantial variation in the size and shape of a bolus prior to a swallow. Preterm infants exhibit decreased abilities to acquire and process food, but how that relates to their bolus size and shape is unknown. Here, we test two hypotheses: (1) that bolus size and shape will differ between term and preterm infants, and (2) bolus size and shape will change longitudinally through development in both term and preterm infants. METHODS: To test these hypotheses, we measured bolus size and shape in preterm and term infant pigs longitudinally through nursing using high-speed videofluoroscopy. RESULTS: Preterm infant pigs swallowed smaller volumes of milk. Although term infants increased the amount of milk per swallow as they aged, preterm infants did not. These changes in bolus volume were also correlated with changes in bolus shape; larger boluses became more elongate as they better filled the available anatomical space of the valleculae. CONCLUSIONS: These results suggest that preterm birth reduces the ability of preterm pigs to increase bolus size as they grow, affecting development in this fragile population. These results highlight that studies on term infant feeding may not translate to preterm infants.


Assuntos
Deglutição , Animais , Animais Recém-Nascidos , Animais Lactentes , Fluoroscopia , Idade Gestacional , Nascimento Prematuro , Sus scrofa , Fatores de Tempo , Gravação em Vídeo
5.
Biol Lett ; 16(4): 20190942, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32264794

RESUMO

All mammals undergo weaning from milk to solid food. This process requires substantial changes to mammalian oropharyngeal function. The coordination of swallowing and respiration is a crucial component of maintaining airway function throughout feeding and matures over infant development. However, how this coordination is affected by weaning is unknown. In this study, we ask how changes in posture, neural maturation and food properties associated with the weaning affect coordination of respiration and swallowing in a validated infant pig model. We recorded seven piglets feeding before and during the weaning age with liquid milk in a bottle and in a bowl, and solid feed in a bowl. Using videofluoroscopy synchronized with respiration, we found (i) the delay in the onset of inspiration after swallowing does not change with head position, (ii) the delay is different between solid food and bowl drinking at the same age and (iii) the delay increases over time when bottle feeding, suggesting a maturational effect. Significant changes in aerodigestive coordination occur prior to and post-weaning, resulting in distinctive patterns for liquid and solid food. The interplay of maturational timelines of oropharyngeal function at weaning may serve as a locus for behavioural and life-history plasticity.


Assuntos
Alimentação com Mamadeira , Deglutição , Animais , Criança , Alimentos , Humanos , Respiração , Suínos , Desmame
6.
Dysphagia ; 35(6): 978-984, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32112144

RESUMO

Aerodigestive coordination is critical for safe feeding in mammals, and failure to do so can result in aspiration. Using an infant pig model, we analyzed the impact of recurrent laryngeal nerve (RLN) lesion on aerodigestive coordination and swallow safety at two time points prior to weaning. We used high-speed videofluoroscopy to record 23 infant pigs longitudinally at two ages (7 days, 17 days) feeding on barium milk. We measured respiration with a plethysmograph and used the Infant Mammalian Penetration-Aspiration Scale (IMPAS) to identify unsafe swallows. We tested for changes in swallow safety longitudinally in control and lesion pigs, and whether there was any interaction between the four different groups. On postnatal day 7, lesioned pigs exhibited differences in the frequency distribution of IMPAS scores relative to control pigs on day 7, and 17 day old lesion and control pigs. There were longitudinal changes in performance following RLN lesion through time, suggesting that the impact of RLN lesion decreases with time, as older lesioned pigs performed similarly to older control pigs. We found minimal differences in the impact of aerodigestive coordination on swallow safety, with shorter delays of inspiration onset reflecting higher rates of penetration in young lesioned pigs. Healthy pigs aspirated at a similar rate to those with an RLN lesion indicating that the occasional occurrence of dysphagia in infants may be a normal behavior.


Assuntos
Transtornos de Deglutição , Nervo Laríngeo Recorrente , Animais , Deglutição , Transtornos de Deglutição/etiologia , Respiração , Suínos
7.
Dysphagia ; 35(2): 334-342, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31297599

RESUMO

Preterm infants often have dysphagia. Because reducing lifetime cumulative exposure to radiation in the context of diagnosis and treatment is a continuing goal of all medical fields which use X-ray imaging, efforts exist to reduce reliance on the gold standard diagnostic tool for dysphagia, VFSS. Alternatives, such as video of external hyolaryngeal movement using video recordings of the anterior surface of the neck, must be evaluated and validated against videofluoroscopy, a task for which non-human animal models are appropriate. In this study, we tested the hypotheses that (1) swallows could be identified equally well from video of external hyolaryngeal movement and bolus movement in videofluoroscopy, and that (2) the two measures would be tightly temporally linked in both term and preterm infant pigs. We recorded 222 swallows in simultaneous and precisely synchronized high-speed videofluoroscopy and high-speed camera films of 4 preterm and 3 term infant pigs drinking milk from a bottle. In term pigs, the two measures consistently identified the same swallows in each image stream. However, in preterm pigs there was a high rate of false positives (~ 10% per feeding sequence) and false negatives (~ 27% per feeding sequence). The timing of hyolaryngeal elevation (external video) and bolus movement (videofluoroscopy) was correlated and consistent in terms pigs, but not in preterm pigs. Magnitude of hyolaryngeal elevation was less in preterm pig swallows than term pig swallows. Absence of epiglottal inversion in preterm pigs was not linked to variation in the timing of the two swallow events. Video of external hyolaryngeal movement, though a reliable swallow indicator in term infant pigs, was unreliable in preterm infant pigs. The coordination of swallowing events differs in preterm and term infant pigs. More research is needed into the distinctive biomechanics of preterm infant pigs.


Assuntos
Animais Recém-Nascidos/fisiologia , Cinerradiografia , Transtornos de Deglutição/fisiopatologia , Deglutição/fisiologia , Laringe/fisiopatologia , Animais , Fenômenos Biomecânicos , Transtornos de Deglutição/diagnóstico por imagem , Modelos Animais de Doenças , Humanos , Doenças do Prematuro/diagnóstico por imagem , Doenças do Prematuro/fisiopatologia , Laringe/diagnóstico por imagem , Reprodutibilidade dos Testes , Suínos
8.
Dysphagia ; 33(1): 51-62, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28780633

RESUMO

Recurrent laryngeal nerve (RLN) injury in neonates, a complication of head and neck surgeries, leads to increased aspiration risk and swallowing dysfunction. The severity of resulting sequelae range from morbidity, such as aspiration pneumonia, to mortality from infection and failure to thrive. The timing of airway protective events including laryngeal vestibule closure (LVC) is implicated in aspiration. We unilaterally transected the RLN in an infant pig model to observe changes in the timing of swallowing kinematics with lesion and aspiration. We recorded swallows using high-speed video-fluoroscopic swallow studies (VFSS) and scored them using the Infant Mammalian Penetration and Aspiration Scale (IMPAS). We hypothesized that changes would occur in swallowing kinematics (1) between RLN lesion and control animals, and (2) among safe swallows (IMPAS 1), penetration swallows (IMPAS 3), and aspiration swallows (IMPAS 7). We observed numerous changes in timing following RLN lesion in safe and unsafe swallows, suggesting pervasive changes in the coordination of oropharyngeal function. The timing of LVC, posterior tongue, and hyoid movements differed between pre- and post-lesion in safe swallows. Posterior tongue kinematics differed for post-lesion swallows with penetration. The timing and duration of LVC and posterior tongue movement differed between aspiration swallows pre- and post-lesion. After lesion, safe swallows and swallows with aspiration differed in timing of LVC, laryngeal vestibule opening, and posterior tongue and hyoid movements. The timing of thyrohyoid muscle activity varied with IMPAS, but not lesion. Further study into the pathophysiology of RLN lesion-induced swallowing dysfunction is important to developing novel therapies.


Assuntos
Transtornos de Deglutição/etiologia , Deglutição/fisiologia , Traumatismos do Nervo Laríngeo/complicações , Pneumonia Aspirativa/etiologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Laringe , Orofaringe , Suínos
9.
Dysphagia ; 33(5): 627-635, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29476275

RESUMO

The timing of the occurrence of a swallow in a respiratory cycle is critical for safe swallowing, and changes with infant development. Infants with damage to the recurrent laryngeal nerve, which receives sensory information from the larynx and supplies the intrinsic muscles of the larynx, experience a significant incidence of dysphagia. Using our validated infant pig model, we determined the interaction between this nerve damage and the coordination between respiration and swallowing during postnatal development. We recorded 23 infant pigs at two ages (neonatal and older, pre-weaning) feeding on milk with barium using simultaneous high-speed videofluoroscopy and measurements of thoracic movement. With a complete linear model, we tested for changes with maturation, and whether these changes are the same in control and lesioned individuals. We found (1) the timing of swallowing and respiration coordination changes with maturation; (2) no overall effect of RLN lesion on the timing of coordination, but (3) a greater magnitude of maturational change occurs with RLN injury. We also determined that animals with no surgical intervention did not differ from animals that had surgery for marker placement and a sham procedure for nerve lesion. The coordination between respiration and swallowing changes in normal, intact individuals to provide increased airway protection prior to weaning. Further, in animals with an RLN lesion, the maturation process has a larger effect. Finally, these results suggest a high level of brainstem sensorimotor interactions with respect to these two functions.


Assuntos
Deglutição/fisiologia , Laringe/fisiologia , Traumatismos do Nervo Laríngeo Recorrente/complicações , Respiração , Animais , Animais Recém-Nascidos , Transtornos de Deglutição , Modelos Animais de Doenças , Humanos , Nervo Laríngeo Recorrente/fisiologia , Suínos
10.
Glycobiology ; 27(1): 57-63, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27744271

RESUMO

Heparin, a member of a family of molecules called glycosaminoglycans, is biosynthesized in mucosal mast cells. This important anticoagulant polysaccharide is primarily produced by extraction of the mast cell-rich intestinal mucosa of hogs. There is concern about our continued ability to supply sufficient heparin to support the worldwide growth of advanced medical procedures from the static population of adult hogs used as food animals. While the intestinal mucosa of adult pigs is rich in anticoagulant heparin (containing a few hundred milligrams per animal), little is known about how the content of heparin changes with animal age. Using sophisticated mass spectral analysis we discovered that heparin was largely absent from the intestinal mucosa of piglets. Moreover, while the related, nonanticoagulant heparan sulfate glycosaminoglycan was present in significant amounts we found little chondroitin sulfate E also associated with mast cells. Histological evaluation of piglet intestinal mucosa showed a very low mast cell content. Respiratory mast cells have been reported in baby pigs suggesting that there was something unique about the piglets used in the current study. These piglets were raised in the relatively clean environment of a university animal facility and treated with antibiotics over their lifetime resulting in a depleted microbiome that greatly reduced the number of mast cells and heparin content of the intestinal mucosal in these animals. Thus, from the current study it remains unclear whether the lack of intestinal mast cell-derived heparin results from the young age of these animals or their exposure to their depleted microbiome.


Assuntos
Animais Recém-Nascidos/metabolismo , Anticoagulantes/metabolismo , Heparina/metabolismo , Mucosa Intestinal/metabolismo , Animais , Sulfatos de Condroitina/metabolismo , Heparina/biossíntese , Heparina/isolamento & purificação , Heparitina Sulfato/metabolismo , Mastócitos/metabolismo , Suínos
11.
Dysphagia ; 32(3): 362-373, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27873091

RESUMO

Recurrent laryngeal nerve (RLN) damage in infants leads to increased dysphagia and aspiration pneumonia. Recent work has shown that intraoral transport and swallow kinematics change following RLN lesion, suggesting potential changes in bolus formation prior to the swallow. In this study, we used geometric morphometrics to understand the effect of bolus shape on penetration and aspiration in infants with and without RLN lesion. We hypothesized (1) that geometric bolus properties are related to airway protection outcomes and (2) that in infants with RLN lesion, the relationship between geometric bolus properties and dysphagia is changed. In five infant pigs, dysphagia in 188 swallows was assessed using the Infant Mammalian Penetration-Aspiration Scale (IMPAS). Using images from high-speed VFSS, bolus shape, bolus area, and tongue outline were quantified digitally. Bolus shape was analyzed using elliptical Fourier analysis, and tongue outline using polynomial curve fitting. Despite large inter-individual differences, significant within individual effects of bolus shape and bolus area on airway protection exist. The relationship between penetration-aspiration score and both bolus area and shape changed post lesion. Tongue shape differed between pre- and post-lesion swallows, and between swallows with different IMPAS scores. Bolus shape and area affect airway protection outcomes. RLN lesion changes that relationship, indicating that proper bolus formation and control by the tongue require intact laryngeal sensation. The impact of RLN lesion on dysphagia is pervasive.


Assuntos
Transtornos de Deglutição/etiologia , Traumatismos do Nervo Laríngeo/complicações , Animais , Animais Recém-Nascidos , Deglutição/fisiologia , Transtornos de Deglutição/fisiopatologia , Pneumonia Aspirativa/etiologia , Suínos
12.
Dysphagia ; 32(1): 73-77, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132098

RESUMO

Research using animal models has contributed significantly to realizing the goal of understanding dysfunction and improving the care of patients who suffer from dysphagia. But why should other researchers and the clinicians who see patients day in and day out care about this work? Results from studies of animal models have the potential to change and grow how we think about dysphagia research and practice in general, well beyond applying specific results to human studies. Animal research provides two key contributions to our understanding of dysphagia. The first is a more complete characterization of the physiology of both normal and pathological swallow than is possible in human subjects. The second is suggesting of specific, physiological, targets for development and testing of treatment interventions to improve dysphagia outcomes.


Assuntos
Pesquisa Biomédica/métodos , Transtornos de Deglutição/fisiopatologia , Modelos Animais de Doenças , Animais , Deglutição/fisiologia , Humanos
13.
Dysphagia ; 30(6): 714-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26285799

RESUMO

Recurrent laryngeal nerve (RLN) injury in neonates, a complication of patent ductus arteriosus corrective surgery, leads to aspiration and swallowing complications. Severity of symptoms and prognosis for recovery are variable. We transected the RLN unilaterally in an infant mammalian animal model to characterize the degree and variability of dysphagia in a controlled experimental setting. We tested the hypotheses that (1) both airway protection and esophageal function would be compromised by lesion, (2) given our design, variability between multiple post-lesion trials would be minimal, and (3) variability among individuals would be minimal. Individuals' swallowing performance was assessed pre- and post-lesion using high speed VFSS. Aspiration was assessed using the Infant Mammalian Penetration-Aspiration Scale (IMPAS). Esophageal function was assessed using two measures devised for this study. Our results indicate that RLN lesion leads to increased frequency of aspiration, and increased esophageal dysfunction, with significant variation in these basic patterns at all levels. On average, aspiration worsened with time post-lesion. Within a single feeding sequence, the distribution of unsafe swallows varied. Individuals changed post-lesion either by increasing average IMPAS score, or by increasing variation in IMPAS score. Unilateral RLN transection resulted in dysphagia with both compromised airway protection and esophageal function. Despite consistent, experimentally controlled injury, significant variation in response to lesion remained. Aspiration following RLN lesion was due to more than unilateral vocal fold paralysis. We suggest that neurological variation underlies this pattern.


Assuntos
Transtornos de Deglutição/etiologia , Deglutição/fisiologia , Esôfago/fisiopatologia , Orofaringe/fisiopatologia , Traumatismos do Nervo Laríngeo Recorrente/complicações , Nervo Laríngeo Recorrente/fisiopatologia , Animais , Transtornos de Deglutição/fisiopatologia , Modelos Animais de Doenças , Traumatismos do Nervo Laríngeo Recorrente/fisiopatologia , Suínos
14.
J Exp Zool A Ecol Integr Physiol ; 339(10): 1052-1058, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37653670

RESUMO

The coordination of respiration and swallowing is a life-critical function in infants. Varying volume and rate of milk delivery changes swallowing frequency and bolus volume but any impact on swallow-respiration coordination is unknown. Five infant pigs were filmed with simultaneous high speed videofluoroscopy and plethysmography while feeding from an automatic system delivering milk across a range of volumes and frequencies. Swallow inspiration delay, respiratory cycle duration, and distribution of inspiratory and expiratory swallows were calculated. At constant volume, there were more inspiratory phase swallows when frequency increased. At high constant frequency, increasing volume changed swallow-respiration coordination patterns, with increased occurrence of inspiratory phase swallows. Respiratory cycle duration did not change in response to changes in oral milk delivery. These results suggest that the observed pattern of expiratory swallowing in infants is achieved primarily by regulation of milk intake, not modulation of respiratory patterns by oral sensation.


Assuntos
Deglutição , Leite , Suínos , Animais , Deglutição/fisiologia , Respiração
15.
J Exp Zool A Ecol Integr Physiol ; 339(1): 92-100, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121049

RESUMO

During infant feeding, the nipple is an important source of sensory information that affects motor outputs, including ones dealing with compression of the nipple, suction, milk bolus movement, and swallowing. Despite known differences in behavior across commercially available nipples, little is known about the in vivo effects of nipple property variation. Here we quantify the effect of differences in nipple stiffness and hole size on an easily measured metric representing infant feeding behavior: nipple compression. We bottle-fed 7-day old infant pigs (n = 6) on four custom fabricated silicone nipples. We recorded live X-ray fluoroscopic imaging data of feeding on nipples of two levels of hardness/stiffness and two hole sizes. We tested for differences in nipple compression at the nipple's maximum compression across different nipple types using a mixed model analysis of variance. Stiffer nipples and those with smaller holes were compressed less than compliant nipples and nipples with larger holes (p < 0.001). We also estimated the force applied on the nipple during feeding and found that more force was applied to the compliant nipple with disproportionately larger strains. Our results suggest that infant pigs' nipple compression depends on material type and hole size, which is likely detected by the infant pigs' initial assessment of compressibility and flow. By isolating nipple properties, we demonstrated a relationship between properties and suckling behavior. Our results suggest that sensory information affects feeding behaviors and may also inform clinical treatment of poor feeding performance.


Assuntos
Alimentação com Mamadeira , Comportamento de Sucção , Suínos , Animais , Comportamento de Sucção/fisiologia , Mamilos
16.
J Texture Stud ; 52(5-6): 603-611, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33783823

RESUMO

Infants experiencing frequent aspiration, the entry of milk into the airway, are often prescribed thickened fluids to improve swallow safety. However, research on the outcomes of thickened milk on infant feeding have been limited to documenting rates of aspiration and the rheologic properties of milk following thickening. As a result, we have little insight into the physiologic and behavioral mechanisms driving differences in performance during feeding on high viscosity milk. Understanding the physiologic and behavioral mechanisms driving variation in performance at different viscosities is especially critical, because the structures involved in feeding respond differently to sensory stimulation. We used infant pigs, a validated animal model for infant feeding, to test how the tongue, soft palate, and hyoid respond to changes in viscosity during sucking and swallowing, in addition to measuring swallow safety and bolus size. We found that the tongue exhibited substantive changes in its movements associated with thickened fluids during sucking and swallowing, but that pharyngeal transit time as well as hyoid and soft palate movements during swallowing were unaffected. This work demonstrates the integrated nature of infant feeding and that behaviors associated with sucking are more sensitive to sensorimotor feedback associated with changes in milk viscosity than those associated with the pharyngeal swallow, likely due to its reflexive nature.


Assuntos
Transtornos de Deglutição , Leite , Animais , Deglutição/fisiologia , Transtornos de Deglutição/etiologia , Humanos , Modelos Animais , Suínos , Viscosidade
17.
PLoS One ; 16(2): e0246954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33592070

RESUMO

Infant birth weight affects neuromotor and biomechanical swallowing performance in infant pig models. Preterm infants are generally born low birth weight and suffer from delayed development and neuromotor deficits. These deficits include critical life skills such as swallowing and breathing. It is unclear whether these neuromotor and biomechanical deficits are a result of low birth weight or preterm birth. In this study we ask: are preterm infants simply low birth weight infants or do preterm infants differ from term infants in weight gain and swallowing behaviors independent of birth weight? We use a validated infant pig model to show that preterm and term infants gain weight differently and that birth weight is not a strong predictor of functional deficits in preterm infant swallowing. We found that preterm infants gained weight at a faster rate than term infants and with nearly three times the variation. Additionally, we found that the number of sucks per swallow, swallow duration, and the delay of the swallows relative to the suck cycles were not impacted by birth weight. These results suggest that any correlation of developmental or swallowing deficits with reduced birth weight are likely linked to underlying physiological immaturity of the preterm infant.


Assuntos
Peso ao Nascer , Nascimento Prematuro/fisiopatologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Gravidez , Suínos
18.
J Appl Physiol (1985) ; 129(6): 1383-1392, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054658

RESUMO

Mammalian infants must be able to integrate the acquisition, transport, and swallowing of food to effectively feed. Understanding how these processes are coordinated is critical, as they have differences in neural control and sensitivity to perturbation. Despite this, most studies of infant feeding focus on isolated processes, resulting in a limited understanding of the role of sensorimotor integration in the different processes involved in infant feeding. This is especially problematic in the context of preterm infants, as they are considered to have pathophysiological brain development and often experience feeding difficulties. Here, we use an animal model to study how the different properties of food acquisition, transport, and swallowing differ between term and preterm infants longitudinally through infancy to understand which processes are sensitive to variation in the bolus being swallowed. We found that term infants are better able to acquire milk than preterm infants, and that properties of acquisition are strongly correlated with the size of the bolus being swallowed. In contrast, behaviors occurring during the pharyngeal swallow, such as hyoid and soft palate movements, show little to no correlation with bolus size. These results highlight the pathophysiological nature of the preterm brain and also demonstrate that behaviors occurring during oral transport are much more likely to respond to sensory intervention than those occurring during the "pharyngeal phase."NEW & NOTEWORTHY Physiological maturation of infant feeding is clinically and developmentally significant, but seldom examined as an integrated function. Using longitudinal high-speed videofluoroscopic data, we found that properties of sucking, such as the length of the suck, are more sensitive to swallow physiology than those associated with the pharyngeal swallow itself, such as hyoid excursion. Prematurity impacted the function and maturation of the feeding system, resulting in a physiology that fundamentally differs from term infants by weaning.


Assuntos
Deglutição , Comportamento de Sucção , Animais , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Faringe
19.
J Biomech ; 105: 109786, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32307182

RESUMO

Movements of the hyoid and thyroid are critical for feeding. These structures are often assumed to move in synchrony, despite evidence that neurologically compromised populations exhibit altered kinematics. Preterm infants are widely considered to be a neurologically compromised population and often experience feeding difficulties, yet measuring performance, and how performance matures in pediatric populations is challenging. Feeding problems are often compounded by complications arising from surgical procedures performed to ensure the survival of preterm infants, such as damage to the recurrent laryngeal nerve (RLN) during patent ductus arteriosus correction surgery. Here, we used a validated infant pig model for infant feeding to test how preterm birth, postnatal maturation, and RLN lesion interact to impact hyoid and thyroid excursion and their coordination. We filmed infant pigs when feeding using videofluorscopy at seven days old (1-2 months human equivalent) and 17 days old (6-9 months human equivalent) and tracked movements of the hyoid and thyroid on both days. We found that preterm birth impacted the coordination between hyoid and thyroid movements, but not their actual excursion. In contrast, excursion of the two structures increased with postnatal age in term and preterm pigs. RLN lesion decreased thyroid excursion, and primarily impacted hyoid movements by increasing variation in hyoid excursion. This work demonstrates that RLN lesion and preterm birth have distinct, but pervasive effects on feeding performance in infants, and suggest that interventions targeted towards reducing dysphagia should be prescribed based off the etiology driving dysphagia, rather than the prognosis of dysphagia.


Assuntos
Transtornos de Deglutição , Nascimento Prematuro , Animais , Criança , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Gravidez , Nervo Laríngeo Recorrente , Suínos , Glândula Tireoide
20.
Front Neurol ; 10: 1301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920925

RESUMO

Swallowing is complex at anatomical, functional, and neurological levels. The connections among these levels are poorly understood, yet they underpin mechanisms of swallowing pathology. The complexity of swallowing physiology means that multiple failure points may exist that lead to the same clinical diagnosis (e.g., aspiration). The superior laryngeal nerve (SLN) and the recurrent laryngeal nerve (RLN) are branches of the vagus that innervate different structures involved in swallowing. Although they have distinct sensory fields, lesion of either nerve is associated clinically with increased aspiration. We tested the hypothesis that despite increased aspiration in both case, oropharyngeal kinematic changes and their relationship to aspiration would be different in RLN and SLN lesioned infant pigs. We compared movements of the tongue and epiglottis in swallows before and after either RLN or SLN lesion. We rated swallows for airway protection. Posterior tongue ratio of safe swallows changed in RLN (p = 0.01) but not SLN lesioned animals. Unsafe swallows post lesion had different posterior tongue ratios in RLN and SLN lesioned animals. Duration of epiglottal inversion shortened after lesion in SLN animals (p = 0.02) but remained unchanged in RLN animals. Thus, although SLN and RLN lesion lead to the same clinical outcome (increased aspiration), the mechanisms of failure of airway protection are different, which suggests that effective therapies may be different with each injury. Understanding the specific pathophysiology of swallowing associated with specific neural insults will help develop targeted, disease appropriate treatments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa