Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(21): 32165-32172, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115179

RESUMO

In this paper we present the first example of waveguides fabricated by UV writing in non-hydrogen loaded Ge-doped planar silica with 213 nm light. Single mode waveguides were fabricated and the numerical apertures and mode field diameters were measured for a range of writing fluences. A peak index change of 5.3 x 10-3 was inferred for the waveguide written with 70 kJ cm-2. The refractive index change is sufficient to match the index structure of standard optical fiber. Uniformity of the written structures was measured and a propagation loss of 0.39 ± 0.03 dB cm-1 was determined through cutback measurements.

2.
Opt Express ; 27(20): 29133-29138, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684652

RESUMO

We present the first demonstration of integrated waveguides in planar silica devices fabricated using direct UV writing with 213 nm laser light. Waveguides were produced with different writing fluences and the NA and MFD of each were measured. Single mode waveguides were achieved at fluence values one-tenth that typically required when operating with a 244 nm laser, allowing for more rapid fabrication. A maximum in-plane index change of 2.4 ×10-3 for a writing fluence of 5 kJ cm-2 was estimated from NA measurements. Finally cutback measurements were performed and a propagation loss of 0.42 ± 0.07 dB cm-1 was directly measured, though losses as low as 0.2 ± 0.03 dB/cm are indicated through calculations.

3.
Opt Lett ; 44(3): 703-706, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702715

RESUMO

We demonstrate thermal classification of sequentially written fiber Bragg gratings. This Letter presents a process to determine the type of fiber Bragg grating written in SMF28 and GF4A by introducing the gratings to thermal treatment. This technique can be applied to several approaches based on sequential writing, including the small spot direct ultraviolet writing technique. Four different types of gratings have been identified, which are dependent on the fiber type and fluence used during the writing process.

4.
Opt Express ; 26(7): 9155-9164, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715871

RESUMO

A route to monitor external refractive indices greater than the core index of the waveguide is presented. Initial application utilizes an integrated optical fibre (IOF) platform due to its potential for use in harsh environment sensing. IOF is fabricated using a bespoke flame hydrolysis deposition process to fuse an optical fibre to a planar substrate achieving an optical quality, ruggedized glass layer between the fibre and substrate was fabricated. The presented refractometer is created by direct UV writing of multiple fibre Bragg gratings into an etched (22 µm diameter) optical fibre post fabrication. Linear regression analysis is applied to quantify propagation loss by monitoring each FBG's back reflected power. The device operates with a sensitivity of approximately 350 dB/cm/RIU at a refractive index of 1.451 at 1550 nm. Numerical simulations using a transfer matrix method are presented and potential routes for development are discussed.

5.
Opt Lett ; 43(4): 791-794, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29443995

RESUMO

This Letter demonstrates a refractometer in integrated optical fiber, a new optical platform that planarizes fiber using flame hydrolysis deposition (FHD). The unique advantage of the technology is survivability in harsh environments. The platform is mechanically robust, and can survive elevated temperatures approaching 1000°C and exposure to common solvents, including acetone, gasoline, and methanol. For the demonstrated refractometer, fabrication was achieved through wet etching an SMF-28 fiber to a diameter of 8 µm before FHD planarization. An external refractive index was monitored using fiber Bragg gratings (FBGs), written into the core of the planarized fiber. A direct comparison to alternative FBG refractometers is made, for which the developed platform is shown to have comparable sensitivity, with the added advantage of survivability in harsh environments.

6.
Opt Lett ; 42(19): 3741-3744, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957116

RESUMO

In this Letter, experimental evidence is provided for an enhanced thermal sensitivity for a double thermal regeneration feature in fiber Bragg gratings fabricated by direct ultraviolet (UV) writing. Here 47 gratings of varying fluence and wavelength were written along a double-clad, germanium-doped core fiber. Subsequently thermal processing without hydrogen loading the fiber was performed and thermal treatment was carried out in a pure oxygen environment. Thermal sensitivity for the double regeneration increased from 13.6±0.3 pm/°C to 21.3±0.2 pm/°C. Furthermore, one of the highest nominal fluence gratings, #45, exhibited a regeneration factor of 1.73.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa