Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(6): 1122-1130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831210

RESUMO

Long-standing questions about human brain evolution may only be resolved through comparisons with close living evolutionary relatives, such as chimpanzees. This applies in particular to structural white matter (WM) connectivity, which continuously expanded throughout evolution. However, due to legal restrictions on chimpanzee research, neuroscience research currently relies largely on data with limited detail or on comparisons with evolutionarily distant monkeys. Here, we present a detailed magnetic resonance imaging resource to study structural WM connectivity in the chimpanzee. This open-access resource contains (1) WM reconstructions of a postmortem chimpanzee brain, using the highest-quality diffusion magnetic resonance imaging data yet acquired from great apes; (2) an optimized and validated method for high-quality fiber orientation reconstructions; and (3) major fiber tract segmentations for cross-species morphological comparisons. This dataset enabled us to identify phylogenetically relevant details of the chimpanzee connectome, and we anticipate that it will substantially contribute to understanding human brain evolution.


Assuntos
Encéfalo , Conectoma , Pan troglodytes , Substância Branca , Pan troglodytes/anatomia & histologia , Animais , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Conectoma/métodos , Masculino , Vias Neurais/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Feminino , Mapeamento Encefálico/métodos
2.
J Med Primatol ; 53(5): e12739, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39327648

RESUMO

An older wild female chimpanzee (Pan troglodytes) was found dead with a large calcium oxalate stone in the renal pelvis. Histopathological changes included glomerulosclerosis, interstitial nephritis and fibrosis, focal mineralization, and medial hypertrophy. Urinary albumin-creatinine-ratio showed increased values from 15 months before death. Causes of the kidney disease remain unconfirmed.


Assuntos
Doenças dos Símios Antropoides , Cálculos Renais , Pan troglodytes , Insuficiência Renal Crônica , Animais , Côte d'Ivoire , Feminino , Doenças dos Símios Antropoides/patologia , Cálculos Renais/veterinária , Cálculos Renais/etiologia , Insuficiência Renal Crônica/veterinária , Insuficiência Renal Crônica/patologia , Evolução Fatal , Oxalato de Cálcio/análise
3.
Neuroimage ; 276: 120202, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247762

RESUMO

Uncovering brain-tissue microstructure including axonal characteristics is a major neuroimaging research focus. Within this scope, anisotropic properties of magnetic susceptibility in white matter have been successfully employed to estimate primary axonal trajectories using mono-tensorial models. However, anisotropic susceptibility has not yet been considered for modeling more complex fiber structures within a voxel, such as intersecting bundles, or an estimation of orientation distribution functions (ODFs). This information is routinely obtained by high angular resolution diffusion imaging (HARDI) techniques. In applications to fixed tissue, however, diffusion-weighted imaging suffers from an inherently low signal-to-noise ratio and limited spatial resolution, leading to high demands on the performance of the gradient system in order to mitigate these limitations. In the current work, high angular resolution susceptibility imaging (HARSI) is proposed as a novel, phase-based methodology to estimate ODFs. A multiple gradient-echo dataset was acquired in an entire fixed chimpanzee brain at 61 orientations by reorienting the specimen in the magnetic field. The constant solid angle method was adapted for estimating phase-based ODFs. HARDI data were also acquired for comparison. HARSI yielded information on whole-brain fiber architecture, including identification of peaks of multiple bundles that resembled features of the HARDI results. Distinct differences between both methods suggest that susceptibility properties may offer complementary microstructural information. These proof-of-concept results indicate a potential to study the axonal organization in post-mortem primate and human brain at high resolution.


Assuntos
Encéfalo , Substância Branca , Animais , Humanos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Neuroimagem , Primatas
4.
Magn Reson Med ; 89(4): 1385-1400, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36373175

RESUMO

PURPOSE: Magnetization transfer saturation ( MTsat $$ \mathrm{MTsat} $$ ) is a useful marker to probe tissue macromolecular content and myelination in the brain. The increased B 1 + $$ {B}_1^{+} $$ -inhomogeneity at ≥ 7 $$ \ge 7 $$ T and significantly larger saturation pulse flip angles which are often used for postmortem studies exceed the limits where previous MTsat $$ \mathrm{MTsat} $$ B 1 + $$ {B}_1^{+} $$ correction methods are applicable. Here, we develop a calibration-based correction model and procedure, and validate and evaluate it in postmortem 7T data of whole chimpanzee brains. THEORY: The B 1 + $$ {B}_1^{+} $$ dependence of MTsat $$ \mathrm{MTsat} $$ was investigated by varying the off-resonance saturation pulse flip angle. For the range of saturation pulse flip angles applied in typical experiments on postmortem tissue, the dependence was close to linear. A linear model with a single calibration constant C $$ C $$ is proposed to correct bias in MTsat $$ \mathrm{MTsat} $$ by mapping it to the reference value of the saturation pulse flip angle. METHODS: C $$ C $$ was estimated voxel-wise in five postmortem chimpanzee brains. "Individual-based global parameters" were obtained by calculating the mean C $$ C $$ within individual specimen brains and "group-based global parameters" by calculating the means of the individual-based global parameters across the five brains. RESULTS: The linear calibration model described the data well, though C $$ C $$ was not entirely independent of the underlying tissue and B 1 + $$ {B}_1^{+} $$ . Individual-based correction parameters and a group-based global correction parameter ( C = 1 . 2 $$ C=1.2 $$ ) led to visible, quantifiable reductions of B 1 + $$ {B}_1^{+} $$ -biases in high-resolution MTsat $$ \mathrm{MTsat} $$ maps. CONCLUSION: The presented model and calibration approach effectively corrects for B 1 + $$ {B}_1^{+} $$ inhomogeneities in postmortem 7T data.


Assuntos
Encéfalo , Pan troglodytes , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Calibragem
5.
Gut ; 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888516

RESUMO

OBJECTIVE: Haemorrhoidal disease (HEM) affects a large and silently suffering fraction of the population but its aetiology, including suspected genetic predisposition, is poorly understood. We report the first genome-wide association study (GWAS) meta-analysis to identify genetic risk factors for HEM to date. DESIGN: We conducted a GWAS meta-analysis of 218 920 patients with HEM and 725 213 controls of European ancestry. Using GWAS summary statistics, we performed multiple genetic correlation analyses between HEM and other traits as well as calculated HEM polygenic risk scores (PRS) and evaluated their translational potential in independent datasets. Using functional annotation of GWAS results, we identified HEM candidate genes, which differential expression and coexpression in HEM tissues were evaluated employing RNA-seq analyses. The localisation of expressed proteins at selected loci was investigated by immunohistochemistry. RESULTS: We demonstrate modest heritability and genetic correlation of HEM with several other diseases from the GI, neuroaffective and cardiovascular domains. HEM PRS validated in 180 435 individuals from independent datasets allowed the identification of those at risk and correlated with younger age of onset and recurrent surgery. We identified 102 independent HEM risk loci harbouring genes whose expression is enriched in blood vessels and GI tissues, and in pathways associated with smooth muscles, epithelial and endothelial development and morphogenesis. Network transcriptomic analyses highlighted HEM gene coexpression modules that are relevant to the development and integrity of the musculoskeletal and epidermal systems, and the organisation of the extracellular matrix. CONCLUSION: HEM has a genetic component that predisposes to smooth muscle, epithelial and connective tissue dysfunction.

7.
Magn Reson Imaging ; 110: 104-111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631534

RESUMO

PURPOSE: Field-to-susceptibility inversion in quantitative susceptibility mapping (QSM) is ill-posed and needs numerical stabilization through either regularization or oversampling by acquiring data at three or more object orientations. Calculation Of Susceptibility through Multiple Orientations Sampling (COSMOS) is an established oversampling approach and regarded as QSM gold standard. It achieves a well-conditioned inverse problem, requiring rotations by 0°, 60° and 120° in the yz-plane. However, this is impractical in vivo, where head rotations are typically restricted to a range of ±25°. Non-ideal sampling degrades the conditioning with residual streaking artifacts whose mitigation needs further regularization. Moreover, susceptibility anisotropy in white matter is not considered in the COSMOS model, which may introduce additional bias. The current work presents a thorough investigation of these effects in primate brain. METHODS: Gradient-recalled echo (GRE) data of an entire fixed chimpanzee brain were acquired at 7 T (350 µm resolution, 10 orientations) including ideal COSMOS sampling and realistic rotations in vivo. Comparisons of the results included ideal COSMOS, in-vivo feasible acquisitions with 3-8 orientations and single-orientation iLSQR QSM. RESULTS: In-vivo feasible and optimal COSMOS yielded high-quality susceptibility maps with increased SNR resulting from averaging multiple acquisitions. COSMOS reconstructions from non-ideal rotations about a single axis required additional L2-regularization to mitigate residual streaking artifacts. CONCLUSION: In view of unconsidered anisotropy effects, added complexity of the reconstruction, and the general challenge of multi-orientation acquisitions, advantages of sub-optimal COSMOS schemes over regularized single-orientation QSM appear limited in in-vivo settings.


Assuntos
Algoritmos , Artefatos , Encéfalo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Anisotropia , Encéfalo/diagnóstico por imagem , Animais , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Pan troglodytes , Mapeamento Encefálico/métodos , Substância Branca/diagnóstico por imagem , Dinâmica não Linear , Reprodutibilidade dos Testes
8.
Front Integr Neurosci ; 17: 1299087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260006

RESUMO

To decipher the evolution of the hominoid brain and its functions, it is essential to conduct comparative studies in primates, including our closest living relatives. However, strong ethical concerns preclude in vivo neuroimaging of great apes. We propose a responsible and multidisciplinary alternative approach that links behavior to brain anatomy in non-human primates from diverse ecological backgrounds. The brains of primates observed in the wild or in captivity are extracted and fixed shortly after natural death, and then studied using advanced MRI neuroimaging and histology to reveal macro- and microstructures. By linking detailed neuroanatomy with observed behavior within and across primate species, our approach provides new perspectives on brain evolution. Combined with endocranial brain imprints extracted from computed tomographic scans of the skulls these data provide a framework for decoding evolutionary changes in hominin fossils. This approach is poised to become a key resource for investigating the evolution and functional differentiation of hominoid brains.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa